Вячеслав Шляхтов - Физиология силы стр 25.

Шрифт
Фон

В исследовании В.А. Мартьянова (1983) показано увеличение мышечной силы у спортсменов под влиянием тренировок, сочетающихся с действием афферентных влияний на ЦНС, вызванных электрическим раздражением периферического нерва. Электростимуляция может быть применена и для ускорения хода восстановительных процессов после напряженной силовой работы (А.А. Николаев, 1999).

Под руководством И.П. Ратова (1979, 2007) выполнены работы по использованию электростимуляции для управления активностью мышц во время непосредственного выполнения самих спортивных движений – обычно в их основную фазу. В экспериментах на представителях различных видов спорта (легкоатлетические метания, бег на короткие дистанции) показана эффективность такого подхода, которая отражалась в более совершенном проявлении усилий мышц, обеспечивающих выполнение основного соревновательного упражнения. Экспериментальные исследования в этом направлении продолжаются. Так, совсем недавно опубликована работа по использованию электростимуляции мышц во время передвижения на лыжах с целью повышения специальной подготовленности лыжников-гонщиков (А.А. Грушин, В.Л. Ростовцев, 2015). Следует заметить, что в данной публикации не приведены параметры электростимуляции (сила и длительность стимулов, их частота, продолжительность пачки стимулов и др.), а также отсутствует описание способа синхронизации наносимых на мышцу электростимулов с моментом отталкивания лыжника. Все это делает невозможным повторение аналогичного исследования в другой лаборатории и, следовательно, вызывает некоторые вопросы к излагаемым в публикации экспериментальным данным.

В последние годы специалистами ГНЦ РФ Института медикобиологических проблем РАН (г. Москва) проведена серия исследований по использованию силовых тренировочных программ без расслабления работающих мышц, а также программ с применением электростимуляции для повышения физических качеств (О.Л. Виноградова и др., 2013, 2014). В этих работах привлекает оригинальность авторского замысла, продуманность и совершенство методики проведения экспериментов. Проведен поиск средств повышения силы и выносливости при минимизации побочных эффектов в виде угнетения двигательного качества – "антагониста". Изучалось влияние низкочастотной электростимуляционной тренировки на фоне растягивания на скоростно-силовые возможности и размеры стимулирующих мышц (Д.В. Попов и др., 2004). Установлено, что такой режим тренировки приводит к увеличению объема стимулируемых мышц и препятствует снижению силы. Для уменьшения риска возможной потери силы при развитии выносливости с помощью низкочастотной электростимуляционной тренировки использовалось растягивание стимулируемых мышц (Б.С. Шенкман и др., 2006; О.Л. Виноградова и др., 2014). Сочетание длительной низкочастотной электростимуляции и растягивания мышц позволило сохранить силовые характеристики стимулированной мышечной группы и в то же время повысить окислительный потенциал (выносливость) их мышечных волокон.

Изложенные выше факты позволяют заключить, что активация скелетных мышц посредством целенаправленного электростимуляционного воздействия может быть использована для изменения функциональных свойств мышечного аппарата человека. Перед специалистами, работающими над изучением влияния различных по своей природе стимуляционных воздействий на свойства скелетных мышц, неизменно встает вопрос об использовании вызванных стимуляцией структурами ЦНС изменений свойств мышц при осуществлении основного соревновательного упражнения. Этот вопрос вполне правомерен, поскольку сформированная в результате систематических тренировочных занятий координационная структура двигательного действия, обеспечиваемая деятельностью структур ЦНС, должна быть скорректирована с учетом тех изменений свойств или приобретенных качеств мышцы, которые вызваны стимуляционным воздействием. Указанное обстоятельство выдвигает задачу поиска методики электростимуляции, которая бы минимально влияла на координационную структуру сформированного соревновательного упражнения.

Попытка решить поставленную выше задачу была предпринята в ВЛГАФК при проведении экспериментов, предусматривающих электрическую стимуляцию спинного мозга спортсменов во время бега на тредбане с целью повышения их скоростно-силовых качеств (Р.М. Городничев, Е.А. Михайлова, В.Н. Шляхтов и др., 2013). Теоретической основой экспериментов послужили современные представления о механизмах регуляции естественных локомоций (ходьбы, бега). Хорошо известно, что в регуляции локомоций существенное значение имеет активность нейрональных сетей интернейронов спинного мозга, расположенных в шейном и поясничном утолщениях. Их принято называть генераторами шагательных движений (ГШД). Такие нейрональные сети имеются у всех млекопитающих, в том числе и у человека (В.С. Гурфинкель и др., 1998; Y. Gerasimenko et al., 2010). Показано, что активация генератора шагательных движений может быть вызвана различными неинвазивными способами: вибрацией мышц ног (В. Гурфинкель и др., 1998), электромагнитной стимуляцией сегментов поясничного отдела спинного мозга (Р.М. Городничев и др., 2010, 2012), чрескожной электрической стимуляцией спинного мозга (Р.М. Городничев и др., 2012).

Каждый из названных методов вызова двигательной активности имеет свои особенности. Вибростимуляция мышц вызывает движения лишь в тазобедренном и коленном суставах. Технические возможности электромагнитного стимулятора позволяют воздействовать на спинной мозг в течение 15–20 с и, следовательно, активировать ГШД на непродолжительное время. Чрескожная электростимуляция спинного мозга легко переносится испытуемыми и может обеспечить инициацию непроизвольных движений во всех суставах нижних конечностей длительное время. Предполагается, что чрескожная электрическая стимуляция активирует шагательный генератор главным образом через входящие в спинной мозг афференты дорсальных корешков и повышает возбудимость нейрональной локомоторной сети (Р.М. Городничев и др., 2012). Поэтому нами предпринята попытка использовать описанные выше особенности электростимуляционного воздействия на спинной мозг для изменения функциональных свойств моторной системы. Конкретная цель настоящего исследования состояла в изучении влияния электрической стимуляции спинного мозга, проводимой непосредственно во время бега на тредбане, на скоростно-силовые способности спортсменов.

В эксперименте приняли участие 12 студентов Великолукской государственной академии физической культуры и спорта (ВЛГАФК), специализирующихся в беге на короткие дистанции, которые были разделены на 2 группы: контрольную (КГ) и экспериментальную (ЭГ), по 6 человек в каждой. Проведение эксперимента было разрешено комитетом по этике ВЛГАФК. Все испытуемые были предупреждены об условиях исследования и дали письменное согласие на участие в нем в соответствии с Хельсинской Декларацией и нормами российского и международного права.

Эксперимент состоял из 2-х тренировочных микроциклов, по 5 дней каждый. Испытуемые обеих групп ежедневно выполняли повторную беговую нагрузку, которая включала в себя 5 повторений 8-секундного бега с максимальной скоростью на беговой дорожке (HP Cosmos Saturn), находящейся в пассивном режиме. Время выполнения беговой работы в одном повторении было выбрано в соответствии с биохимическими основами развития скоростно-силовых качеств. Очередное повторение тренировочного отрезка спортсмены выполняли только после того, как ЧСС достигала уровня 100–110 уд/мин. Контроль ЧСС осуществлялся с помощью мониторов сердечного ритма Polar.

Испытуемым ЭГ во время бега проводилась непрерывная чрескожная электрическая стимуляция спинного мозга (ЧЭССМ) на уровне T11-T12 и T12-L1 с помощью двухканального стимулятора КУЛОН (ГУАП, СПб). Частота электростимуляции составляла 30 Гц, сила стимула подбиралась индивидуально для каждого обследуемого. Прямоугольные биполярные стимулы длительностью 0,5 мс заполнялись несущей частотой 10 кГц для предотвращения болевых ощущений. Испытуемые КГ электростимуляцию не получали.

Протокол исследования включал фоновое исследование максимальной изометрической силы мышц голени при подошвенном сгибании стопы, скоростно-силовых возможностей мышц голени, максимальной анаэробной мощности (МАМ). Повторное исследование этих же параметров проводилось после 5-ти и 10-ти дней тренировки. Во время беговой нагрузки регистрировалась электрическая активность (ЭМГ) мышц бедра и голени.

Для оценки максимальной произвольной изометрической силы (МПС) мышц голени использовался мультисуставной комплекс Biodex. Спортсмен находился в кресле, правая нижняя конечность фиксировалась при угле в 110° – в коленном и 90° – в голеностопном суставе, стопа другой ноги располагалась в упоре с углом 90° в коленном и голеностопном суставах. Спортсмены выполняли сгибание и разгибание стопы в голеностопном суставе (т. н. подошвенное сгибание). Выполнялись три попытки с периодом отдыха 30 с. Засчитывался результат лучшей попытки.

Оценка скоростно-силовых возможностей мышц голени осуществлялась также с использованием комплекса Biodex. Развиваемое испытуемыми усилие составляло 80 % от их индивидуальной величины МПС. Испытуемые выполняли максимальное количество подошвенных сгибаний стопы в течение 11 с, с траекторией движения в диапазоне 35°. Длительность выполнения теста равнялась среднему времени пробегания дистанции 100 м в группах исследуемых спортсменов. Таким образом, моделировались временные параметры соревновательного упражнения. Оценивались следующие показатели: общая работа (Дж), количество движений за 11 с (раз) и амплитуда движений (градусы).

В начале каждого экспериментального дня после предварительной разминки, а также по окончании тренировки спортсмены выполняли тестовое подошвенное сгибание стопы за 11 с на комплексе Biodex.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3