Здесь числовой коэффициент делимого разделили на числовой коэффициент делителя, вычли показатели степени буквы x (31=2), буквы y (85=3) и буквы z (73=4).
При делении двух одночленов могут возникнуть две ситуации, которые требуют дополнительного пояснения.
1.Если показатели степени у некоторой буквы в делимом и делителе одни и те же, то в частное эта буква не войдёт (ведь нулевая степень любого числа равна единице).
Пример: 12x3y4: 4x3y2 =3y2.
2.Если показатель степени какой-нибудь буквы в делимом меньше, чем показатель степени той же буквы в делителе, то вычитание даёт отрицательную степень этой буквы.
Пример: 8x3y5: 2x5y3 = 4x-2y2 = (4y2) / (x2)
При возведении одночлена в степень используется правило возведения степени в степень.
Пример: Возведём одночлен 2a4b2 в четвертую степень.
(2a4b2) 4 = 24 (a4) 4 (b2) 4 = 16a16b8.
Не забывайте, что показатели степеней при данном правиле перемножаются.
Сумма одночленов называется многочленом.
Например, 4x2y +3a -7b2 многочлен, состоящий из суммы одночленов 4x2, 3a, -7b2.
При сложении и вычитании многочленов снова получается многочлен.
Пример. Сложим многочлены x3 +2x2y2 7x2 + y и 3x3 x2y2 +5x2 3y.
Составим сумму многочленов, затем раскроем скобки и приведём в полученном многочлене подобные члены.
(x3+2x2y27x2+y) + (3x2 x2y2 +5x2 3y) = x3 +3x3 +2x2y2 x2y2 7x2 +5x2+ y 3y = 4x3 + x2y2 2x2 2y.
Здесь одновременно с раскрытием скобок мы сгруппировали подобные члены (для удобства вычислений).
Аналогично, производится и вычитание многочленов. Не забывайте, если перед скобкой стоит знак «минус», то все члены, заключаемые в скобки, меняют свой знак на противоположный.
Пример. (4x2y 7x3 +5y 3) (-2x2y +5x3 3y +2) =4x2y 7x3 +5y -3 +2x2y -5x3 +3y 2 = 6x2y 12x3 +8y 5.
Произведение многочленов.
Произведение одночлена и многочлена всегда можно представить в виде многочлена.
Чтобы умножить одночлен на многочлен, нужно умножить этот одночлен на каждый член многочлена и полученные произведения сложить.
Схема: a× (b+c) =a×b+a×c (открытие скобок)
Например:
4x3 (2y3 x +6) = -4x32y3 + (-4x3 (-x)) + (-4x3 ×6) = -8x3y3 +4x4 24x3.
Мы выписали здесь промежуточные вычисления, хотя, в принципе, без этой записи можно обойтись.
Умножение многочлена на многочлен.
Произведение многочлена на многочлен равно сумме всех возможных произведений каждого одночлена одного из многочленов на каждый одночлен другого.
Схема: (a+b) × (c+d) =a×c+a×d+b×c+b×d
Пример. (3x2 6x +2) × (4x3 3x) = 12x5 9x3 24x4 +18x2 +8x3 6x =
= 12x5 24x4 x3 +18x2 6x.
Существуют частные случаи умножения многочленов, которые называются формулами сокращённого умножения многочленов. Их желательно запомнить.
1. (a+b) 2 =a2+2ab+b2 (квадрат суммы)
2. (a-b) 2=a22ab+b2 (квадрат разности)
3. (a-b) (a+b) =a2-b2 (разность квадратов)
4. (a+b) 3=a3+3a2b+3ab2+b3 (куб суммы)
5. (a-b) 3=a33a2b+3ab2-b3 (куб разности)
6. (a+b) (a2-ab+b2) =a3+b3 (сумма кубов)
7. (a-b) (a2+ab+b2) =a3-b3 (разность кубов)
Примеры: (2ma2 +0.1nb2) 2 = 4m2a4 +0.4mna2b2 +0.01n2b4
(5x3 2y3) 2 = 25x6 20x3y3 +4y6
(0.2a2b + c3) (0.2a2b c3) = 0.04a4b2 c6
(5ab2 +2a3) 3 = 125a3b6 +150a5b4 +60a7b2 +8a9
Предлагаю вам самим узнать, какие формулы были использованы в этих примерах.
Деление многочленов.
1. Деление многочлена на одночлен.
Частное от деления многочлена на одночлен равно сумме частных, полученных от деления каждого слагаемого многочлена на одночлен.
Схема:
2. Деление многочлена на многочлен в общем случае можно выполнить с остатком, подобно тому, как это делается при делении целых чисел.