
Рис. 7. Макет куполов собора св. Софии в Константинополе.
Формы византийских зданий, как правило, просты. Готические же архитекторы,давая волю своему воображению, создавали перекрытия, боковые приделы, витражи.И хоть это, надо думать, обходилось недешево, такие постройки, если онибыли сделаны со вкусом и знанием дела, могли служить образцами инженерногоискусства и художественного мастерства. Что же касается каменной кладки,то она должна быть выполнена так, чтобы напряжения во всех точках конструкциибыли сжимающими: ведь кладка совсем не сопротивляется растяжению, под действиемкоторого она разваливается по швам.
Готические архитекторы, пытаясь заставить конструкцию работать на сжатие,не прибегали к математике, и поэтому в трехмерные лабиринты соборных крышчертом прокрадывалось растяжение. Так обрушилась башня одного из самыхбольших готических соборов - собора в Бове (1247), крыша его проваливаласьдважды. Архитекторы знали лишь качественную сторону подобных катастрофи пытались предупредить их, подкрепляя конструкции частоколом контрфорсов(рис. 8).

Рис. 8. Типичная конструкцияготического собора с контрфорсами.1 - деревянная крыша;2 - арочный свод;3 - контрфорс;4 - деревянная крыша бокового придела;5 - стена придела.
В соборе св. Софии эта задача решалась и рациональнее и успешнее: тамвспомогательные купола давили на главный купол и создавали сжатие в опаснойобласти. Однако иногда готические зодчие перебарщивали: создавая слишкомбольшие боковые давления, они должны были ставить подпорки изнутри, чтобыпредотвратить разрушение крыш. Эти подпорки чаще всего делались в видеперевернутых арок, подобных аркам собора в Уэлсе (Великобритания), который,как бы ни оценивали его в эстетическом плане, технически построен неграмотно(рис. 9). Не удивительно, что крыши церквей довольно часто рушились наголовы коленопреклоненных прихожан.

Рис. 9. Собор в Уэльсе (Великобритания).
Каменная кладка остается целой благодаря силам тяжести, то есть приправильно спроектированной кладке вес камня создает безопасную сжимающуюнагрузку во всех ее точках. А если этого веса не хватает, к зданию всегдаможно добавить бельведеры или башни. Если же в конструкции появляются растянутыеобласти, то, безусловно, растягивающие и сжимающие нагрузки (в том численагрузки от веса сооружения) должны быть уравновешены. Так, канаты подвесногомоста (рис. 10) находятся в растянутом состоянии, а грунт под мостом оказываетсясжатым. Растяжение в брезенте и растяжках палатки уравновешивается сжатиемв центральной подпорке и на той земляной площадке, где установлена палатка.На плывущем корабле растяжение в парусах и оснастке вызывает сжатие мачти рангоутов. В теле животных сжимающие нагрузки воспринимаются скелетом,в основном позвоночником; эти напряжения возникают не только под действиемсобственного веса, но и вследствие растяжения в мышцах и сухожилиях. Сокращаямышцу, я поднимаю руку, в это время мышца передает сжимающую силу кости,а кость легко выдерживает сжатие. Если нога попадает в условия, когда нанее действует изгиб - а изгиб включает растяжение, - нога может сломаться.

Рис. 10. Растяжение в тросах балансируется сжатием в грунте
Когда мы располагаем материалами, одинаково хорошо работающими и насжатие и на растяжение, наши конструкции оказываются проще и безопаснее.Именно поэтому в строительстве удобны железобетон и стальные конструкции.
Инженерам повезло, в их распоряжении есть железо и сталь - ведь мычасто и не знаем, какого рода напряжения придется выдержать машине во времяработы. Например, стенки парового котла работают на растяжение, но еслипо какой-то причине давление пара упадет ниже атмосферного, котел будетсжат разностью давлений, однако со стальным котлом ничего страшного непроизойдет.
К довольно неожиданным эффектам, с которыми приходится бороться, могутпривести сжимающие напряжения в корпусе подводной лодки. Когда лодка находитсяв надводном положении, она плавает, как любое другое судно, поскольку еевес меньше веса воды, которая может быть вытеснена объемом лодки. Чтобылодка погрузилась, балластные цистерны заполняют водой настолько, чтобывес лодки был равен весу воды в ее объеме. Тогда "удельный вес" лодки будетравен удельному весу воды, и лодка не будет иметь запаса плавучести.
Теперь лодка может опускаться на глубину и маневрировать примерно так же, какэто проделывает дирижабль в воздухе. Однако, погружаясь глубже, лодкаиспытывает все большее и большее давление воды, и сжимающие напряжения в еекорпусе растут. Поскольку давление внутри лодки остается примерно постоянным,корпус ее сжимается, уменьшается объем, а следовательно, уменьшается ивыталкивающая сила. Если вес лодки вместе с балластом не изменяется, онастремится провалиться глубже, и при некоторых обстоятельствах этот процессможет стать опасным. На предельной для подводной лодки глубине погружениявеличина деформации сжатия может составить около 0,7%. Деформация происходит вовсех трех направлениях, поэтому объем лодки может уменьшиться примерно на 2%.Так как сжимаемость воды очень невелика, то для лодки весом 1000 т это будетозначать потерю выталкивающей силы примерно 20 т. Если эту силу не компенсировать, частично опорожняя балластныецистерны от воды, подводная лодка будет опускаться все глубже и глубже, пока еене раздавит давлением воды. В этом, между прочим, заключается одна изтрудностей постройки подводной лодки из стеклопластиков, которые всем, пожалуй,хороши, кроме модуля упругости: он слишком мал.
Иногда думают, что затонувшие подводные лодки "висят" где-то поблизостиот океанского дна. Это, конечно, нелепое представление: если корпус потерпевшейаварию лодки и не сомнет давлением воды, что случается чаще всего, то онбудет непрерывно сжиматься, выталкивающая сила будет падать и лодка будетопускаться на дно все быстрее и быстрее.
Воздушные шары, пневматические шины и т. п. представляют особый случайконструкции, в которой растягивающие напряжения в оболочке уравновешеныдавлением наполняющего их газа или жидкости. Поэтому большие баржи-мешкии надувные лодки обычно очень легкие и эффективные конструкции. Изобретениекрыш, поддерживаемых изнутри воздухом, заставляет пересмотреть прежниеархитектурные традиции, в этих конструкциях все элементы работают на растяжение,лишь воздух внутри здания сжат.
Балки и изгиб
Итак, мы знаем теперь, что понять, как работает конструкция на растяжениеи сжатие, довольно легко. Но вот как те же самые растяжение и сжатие позволяютбалкам выдерживать нагрузки - это далеко не очевидно. А между тем разногорода балки (рис. 11) составляют львиную долю всех конструкций, с которымимы повседневно сталкиваемся. Самая обычная половая доска - наглядный примербалки, и таких примеров можно привести огромное множество. Мы уже говорили,что задача этой самой доски заключается в том, чтобы давить на наши подошвывверх с силой, в точности равной нашему весу. Естественно, эту роль полдолжен играть постоянно, в том числе и тогда, когда мы стоим посреди комнаты,далеко от стены, которая в конечном счете будет воспринимать силу нашеговеса. Но позвольте, как эта сила передается от стены на наши ноги, и обратно?