Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы стр 58.

Шрифт
Фон

14.16. Выражение Сборник задач по математике с решениями... можно преобразовать, воспользовавшись разложением sin 3x = sin (2x + x).

14.17. Так как абсцисса вершины параболы оказывается внутри интервала −1 < z < 1, а сама парабола направлена рогами вверх, то условие задачи равносильно тому, что ордината вершины положительна.

К главе 15

15.1. Неравенство сводится к квадратному, если положить logsin x 2 = y. При этом необходимо следить за равносильностью преобразований.

15.3. Поскольку основание логарифма больше единицы, неравенство между логарифмами можно заменить таким же неравенством между cos x и tg x.

15.4. Остается перейти к системе тригонометрических неравенств, равносильной логарифмическому неравенству. При этом нужно помнить, что все функции, стоявшие в условии под знаками логарифма, должны быть положительными.

15.5. Для дальнейшего нужно иметь в виду, что условие 0 < |а| < 1 не равносильно неравенству −1 < а < 1.

15.6. При дальнейшем решении мы столкнемся с выбором целочисленного аргумента. Следует помнить, что мы имеем дело с |lg x|, а не с lg x.

15.7. Неравенство равносильно условию, что знаменатель положителен, если при этом arccos (x² − 3x + 2) существует и отличен от нуля.

15.8. Если 1 − x > 0, то правая и левая части неравенства попадают в интервал от 0 до /2 , который является общим интервалом монотонности для тангенса и косинуса. Если взять косинус от правой и левой частей неравенства, а знак неравенства изменить на противоположный, то получим неравенство, равносильное данному.

15.9. Неравенство 4xx² − 3 > 1 удовлетворяется лишь при x = 2. Докажите, что тогда оба сомножителя должны быть раны единице.

15.10. Первая система не имеет решения, поскольку из условия А = 0 следует, что tg x = 1. Но tg x стоит в основании логарифма и не может быть равным единице. Остается решить вторую систему, которую можно упростить, заметив, что tg x > 1.

К главе 16

16.3. При исследовании нужно помнить, что отрицательное число в дробной степени не имеет для нас смысла.

16.4. Решив простейшее тригонометрическое уравнение, получим показательное уравнение, которое нужно исследовать, в зависимости от значений, принимаемых целочисленным аргументом.

16.5. Вспомнить, когда произведение синусов и косинусов может равняться единице.

16.7. Полученное уравнение легко решить, если записать sin³ x = = sin x (1 − cos² x). При решении распадающегося уравнения, которое получится в результате такой замены, нужно постоянно иметь в виду ограничения.

16.8. При решении удобно на время забыть о возникающих ограничениях, а в конце проверить, для каких из найденных значений неизвестного они выполняются.

16.9. Использовать тот факт, что x > 0.

16.10. При исследовании полезно иметь в виду, что cos x ≤ 1 и дискриминант квадратного уравнения не должен быть отрицательным.

16.11. Удобно отдельно рассмотреть случаи а ≤ −1, а ≥ −1, когда данное уравнение имеет неотрицательный дискриминант.

16.12. Вы должны получить систему, состоящую из двух уравнений, трех неравенств и двух ограничений ≠.

16.13. Обозначив 4 через u (u > 0), найдем, что левая часть, равная /u + u, не может стать меньше 4. Чтобы оценить квадратный трехчлен, стоящий в правой части, можно выделить полный квадрат.

16.14.Сборник задач по математике с решениями...

К главе 17

17.1. Осуществить замену переменных: x − 1 = y, 2x + 1 = z. Найти f(y) и g(z), что равносильно знанию f(x) и g(x).

17.2. Уравнение f(f(x)) = 0 имеет корни x1 = 0 и x2 = 3. Исследование функции y = x³ − 6x² + 9x − 3 позволит определить число оставшихся корней интересующего нас уравнения.

17.3. Первое уравнение после подстановки примет вид

5 · 2 = (1 + 2k)3,

k - целое. При каких y в правой части не будет множителя 3?

17.4. Полученное после подстановки квадратное уравнение относительно z имеет дискриминант, равный (3y − /y)² , что позволяет непосредственно рассмотреть возможные корни.

17.5. Касание функций f(x) и F(x) в точке М0(x0; y0) означает совпадение ординат f(x0) и F(x0), а также угловых коэффициентов касательных при x = x0, т. е. значений f′(x0) и f(x0).

17.6. Будьте внимательны в отношении точек границы множества решений и определите, какие из них принадлежат этому множеству, а какие не принадлежат.

17.7. Прямая y = −x позволит отсечь от части плоскости, координаты точек которой удовлетворяют первому неравенству - фигуру, площадь которой нас интересует.

17.8. Прямые AC и BD пересекаются в точке E(4; 4). Прямая BC параллельна оси абсцисс и пересекает ось ординат в точке G. Через точку D проведем прямую DF, параллельную оси абсцисс и пересекающую ось ординат в точке F, а прямую AC - в точке H. Пусть CK - перпендикуляр, опущенный из точки С на FD. Теперь искомую площадь легко найти через площадь прямоугольника FGCK и прямоугольных треугольников, которые будут изображены на рисунке после всех проведенных выше построений.

17.9. После замены переменных и простых преобразований исходные неравенства примут вид

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке