Ангелина Яковлева - Статистика. Ответы на экзаменационные билеты стр 9.

Шрифт
Фон

Статистика. Ответы на экзаменационные билеты

Одним из основных требований к формированию выборочных совокупностей является требование репрезентативности выборки, т. е. для характеристики по данным выборочной совокупности интересующего исследователей признака генеральной совокупности необходимо, чтобы единицы выборки в достаточной степени обладали этим признаком.

Ошибки выборки.

В процессе всякого наблюдения возникают ошибки регистрации. При выборочном наблюдении возникают специфические ошибки – ошибки репрезентативности (или представительности) выборки.

Ошибка репрезентативности – это разность между обобщающими выборочными показателями и соответствующими показателями генеральной совокупности. Например, для показателя средней ошибка репрезентативности равна модулю разности между выборочной средней и генеральной средней:

Статистика. Ответы на экзаменационные билеты

Для показателя доли ошибка репрезентативности равна модулю разности между выборочной долей и генеральной долей:

Статистика. Ответы на экзаменационные билеты

Ошибки репрезентативности выборки делятся на случайные и систематические.

Систематические ошибки выборки направлены в одну определенную сторону (либо в сторону увеличения, либо в сторону уменьшения). Они могут быть преднамеренными и непреднамеренными.

Задача статистики состоит в избежании ошибок репрезентативности, в устранении причин их появления. Также статистика определяет величину случайных ошибок репрезентативности и устанавливает их возможные пределы.

22. Способы отбора данных. Способы распространения данных выборки на всю генеральную совокупность

Для формирования выборочной совокупности применяются различные способы отбора .

1. Отбор, при котором генеральная совокупность не разбивается на части:

1) простой случайный повторный отбор . Он характеризуется следующими чертами:

а) отбор единиц выборочной совокупности производится из всей генеральной совокупности;

б) отбор носит случайный характер;

в) единицы генеральной совокупности, попавшие в выборочную совокупность, вновь возвращаются в генеральную совокупность после изучения;

2) простой случайный бесповторный отбор . Он характеризуется следующими чертами:

а) отбор единиц выборочной совокупности производится из всей генеральной совокупности;

б) отбор носит случайный характер;

в) единицы генеральной совокупности после об следования не возвращаются в генеральную совокупность.

В случае применения простого случайного отбора все единицы генеральной совокупности имеют одинаковую вероятность попасть в выборочную совокупность.

2. Отбор, при котором генеральная совокупность разбивается на части:

1) типический отбор , характеризующийся следующими чертами:

а) вся генеральная совокупность разбивается на типически однородные группы или части;

б) отбор единиц производится не из всей генеральной совокупности, а из отдельных типичных групп либо механически, либо случайно.

При типическом способе отбора в выборочную совокупность попадают все представители типических групп, что обеспечивает большую репрезентативность и точность полученных результатов. Одной из предпосылок применения типического отбора являются большое разнообразие генеральной совокупности и ее элементов и значительная неоднородность изучаемых при этом признаков. Его применение связано со сложными социально-экономическими явлениями. Типический отбор является достаточно дорогим, но самым точным способом отбора;

2) серийный отбор, характеризующийся следующими чертами:

а) вся генеральная совокупность разбивается на части (серии или гнезда);

б) отбор единиц генеральной совокупности производится целыми сериями;

в) наблюдению подвергаются все без исключения единицы отобранной серии;

г) отбор носит случайный характер; Серийный отбор является менее точным способом отбора, однако его легче организовать;

3) механический отбор, который характеризует ся следующими чертами:

а) отбор осуществляется из всей генеральной совокупности;

б) отбор производится по механическому принципу (по списку, в шахматном порядке, по географическому признаку, в порядке убывания или возрастания).

Механический отбор является более точным, чем случайный, однако уступает типическому отбору.

На практике также часто применяется комбинированный отбор , при котором сочетаются указанные выше способы отбора.

Существуют два способа распространения данных выборочной совокупности на всю генеральную совокупность:

1) прямой, или способ прямого счета;

2) косвенный, или способ поправочных коэффициентов. При первом способе показатели, найденные посредством выборки (выборочная средняя или выборочная доля) умножаются на число единиц генеральной совокупности.

Второй способ применяется в целях проверки и уточнения данных сплошного наблюдения. В этом случае сопоставляют по соответствующим объектам данные выборочного наблюдения со сплошным, исчисляют поправочный коэффициент, которым и пользуются для внесения поправок в материалы сплошного наблюдения.

23. Функциональная, статистическая и корреляционная зависимости. Определение регрессии

Большинство социально-экономических явлений и процессов, исследуемых статистикой, взаимосвязаны между собой. Поэтому одна из основных задач статистики состоит в установлении и измерении причинно-следственных связей между изучаемой случайной величиной Y и одной или несколькими случайными (или неслучайными) величинами Х1, Х 2 , …, Хn.

При изучении причинно-следственных связей выделяют факторные и результативные признаки. Результативные признаки Y выступают в роли функции, т. к. они изменяются под воздействием факторных признаков. Факторные признаки Х1, Х2, …, Хn выступают в роли аргументов функции, т. к. они влияют на изменение результативных признаков.

Различают два вида связей между случайными величинами – функциональную и корреляционную.

Функциональная зависимость характеризуется полным соответствием между зависимой (результативной) переменной Y и факторной переменной Х. Но в связи с тем что факторные и результативные переменные подвержены воздействию случайных факторов, как общих для обоих переменных, так и индивидуальных, то строгая функциональная зависимость на практике встречается редко.

Предположим, что результативная переменная /зависит от случайных факторов Т1, Т2, М1, М2, а факторная переменная Х зависит от случайных факторов Т1, Т2, К1, то Y и Х связаны статистической зависимостью, т. к. среди случайных факторов есть общие – Т1 и Т2.

Статистическая зависимость характеризуется изменением распределения одной величины под влиянием изменения другой.

Корреляционная зависимость характеризуется изменением средней величины одного из признаков под влиянием изменения значения другого признака.

Зависимости между факторной и результативной переменными могут быть прямыми или обратными:

1) при наличии между переменными прямой связи направление изменения результативной переменной совпадает с направлением изменения факторной переменной (с увеличением Х увеличивается и Y);

2) при наличии между переменными обратной связи направление изменения результативной переменной противоположно направлению изменения факторной переменной (с увеличением Х переменная Y уменьшается).

Корреляционные зависимости в зависимости от количества факторных переменных делятся на однофакторные (простые) и многофакторные (множественные):

1) однофакторные корреляционные связи – это связи между одной факторной переменной Х и одной результативной переменой Y;

2) многофакторные корреляционные связи – это связи между несколькими факторными Х1, Х2, …, Хn и одной результативной переменной Y.

Условным средним yx называется среднее арифметическое значений результативной переменной Y при условии, что Х = х. Тогда корреляционную зависимость результативной переменной Y от Х можно определить как функциональную зависимость условной средней yx от х:

Статистика. Ответы на экзаменационные билеты

Полученное равенство называется уравнением регрессии Y на Х, а функция f(x) называется регрессией Y на Х.

Регрессией называется функция, позволяющая по величине одной корреляционно связанной переменной рассчитать среднюю величину другой переменной.

Основные задачи , решаемые с помощью корреляционно-регрессионного анализа:

1) определение формы корреляционной зависимости, т. е. вида функции регрессии (линейной, степенной и др.);

2) оценка степени тесноты корреляционной связи между переменными либо на основе графика, либо на основе расчета специальных показателей тесноты связи.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3