
Одним из основных требований к формированию выборочных совокупностей является требование репрезентативности выборки, т. е. для характеристики по данным выборочной совокупности интересующего исследователей признака генеральной совокупности необходимо, чтобы единицы выборки в достаточной степени обладали этим признаком.
Ошибки выборки.
В процессе всякого наблюдения возникают ошибки регистрации. При выборочном наблюдении возникают специфические ошибки – ошибки репрезентативности (или представительности) выборки.
Ошибка репрезентативности – это разность между обобщающими выборочными показателями и соответствующими показателями генеральной совокупности. Например, для показателя средней ошибка репрезентативности равна модулю разности между выборочной средней и генеральной средней:
![]()
Для показателя доли ошибка репрезентативности равна модулю разности между выборочной долей и генеральной долей:
![]()
Ошибки репрезентативности выборки делятся на случайные и систематические.
Систематические ошибки выборки направлены в одну определенную сторону (либо в сторону увеличения, либо в сторону уменьшения). Они могут быть преднамеренными и непреднамеренными.
Задача статистики состоит в избежании ошибок репрезентативности, в устранении причин их появления. Также статистика определяет величину случайных ошибок репрезентативности и устанавливает их возможные пределы.
22. Способы отбора данных. Способы распространения данных выборки на всю генеральную совокупность
Для формирования выборочной совокупности применяются различные способы отбора .
1. Отбор, при котором генеральная совокупность не разбивается на части:
1) простой случайный повторный отбор . Он характеризуется следующими чертами:
а) отбор единиц выборочной совокупности производится из всей генеральной совокупности;
б) отбор носит случайный характер;
в) единицы генеральной совокупности, попавшие в выборочную совокупность, вновь возвращаются в генеральную совокупность после изучения;
2) простой случайный бесповторный отбор . Он характеризуется следующими чертами:
а) отбор единиц выборочной совокупности производится из всей генеральной совокупности;
б) отбор носит случайный характер;
в) единицы генеральной совокупности после об следования не возвращаются в генеральную совокупность.
В случае применения простого случайного отбора все единицы генеральной совокупности имеют одинаковую вероятность попасть в выборочную совокупность.
2. Отбор, при котором генеральная совокупность разбивается на части:
1) типический отбор , характеризующийся следующими чертами:
а) вся генеральная совокупность разбивается на типически однородные группы или части;
б) отбор единиц производится не из всей генеральной совокупности, а из отдельных типичных групп либо механически, либо случайно.
При типическом способе отбора в выборочную совокупность попадают все представители типических групп, что обеспечивает большую репрезентативность и точность полученных результатов. Одной из предпосылок применения типического отбора являются большое разнообразие генеральной совокупности и ее элементов и значительная неоднородность изучаемых при этом признаков. Его применение связано со сложными социально-экономическими явлениями. Типический отбор является достаточно дорогим, но самым точным способом отбора;
2) серийный отбор, характеризующийся следующими чертами:
а) вся генеральная совокупность разбивается на части (серии или гнезда);
б) отбор единиц генеральной совокупности производится целыми сериями;
в) наблюдению подвергаются все без исключения единицы отобранной серии;
г) отбор носит случайный характер; Серийный отбор является менее точным способом отбора, однако его легче организовать;
3) механический отбор, который характеризует ся следующими чертами:
а) отбор осуществляется из всей генеральной совокупности;
б) отбор производится по механическому принципу (по списку, в шахматном порядке, по географическому признаку, в порядке убывания или возрастания).
Механический отбор является более точным, чем случайный, однако уступает типическому отбору.
На практике также часто применяется комбинированный отбор , при котором сочетаются указанные выше способы отбора.
Существуют два способа распространения данных выборочной совокупности на всю генеральную совокупность:
1) прямой, или способ прямого счета;
2) косвенный, или способ поправочных коэффициентов. При первом способе показатели, найденные посредством выборки (выборочная средняя или выборочная доля) умножаются на число единиц генеральной совокупности.
Второй способ применяется в целях проверки и уточнения данных сплошного наблюдения. В этом случае сопоставляют по соответствующим объектам данные выборочного наблюдения со сплошным, исчисляют поправочный коэффициент, которым и пользуются для внесения поправок в материалы сплошного наблюдения.
23. Функциональная, статистическая и корреляционная зависимости. Определение регрессии
Большинство социально-экономических явлений и процессов, исследуемых статистикой, взаимосвязаны между собой. Поэтому одна из основных задач статистики состоит в установлении и измерении причинно-следственных связей между изучаемой случайной величиной Y и одной или несколькими случайными (или неслучайными) величинами Х1, Х 2 , …, Хn.
При изучении причинно-следственных связей выделяют факторные и результативные признаки. Результативные признаки Y выступают в роли функции, т. к. они изменяются под воздействием факторных признаков. Факторные признаки Х1, Х2, …, Хn выступают в роли аргументов функции, т. к. они влияют на изменение результативных признаков.
Различают два вида связей между случайными величинами – функциональную и корреляционную.
Функциональная зависимость характеризуется полным соответствием между зависимой (результативной) переменной Y и факторной переменной Х. Но в связи с тем что факторные и результативные переменные подвержены воздействию случайных факторов, как общих для обоих переменных, так и индивидуальных, то строгая функциональная зависимость на практике встречается редко.
Предположим, что результативная переменная /зависит от случайных факторов Т1, Т2, М1, М2, а факторная переменная Х зависит от случайных факторов Т1, Т2, К1, то Y и Х связаны статистической зависимостью, т. к. среди случайных факторов есть общие – Т1 и Т2.
Статистическая зависимость характеризуется изменением распределения одной величины под влиянием изменения другой.
Корреляционная зависимость характеризуется изменением средней величины одного из признаков под влиянием изменения значения другого признака.
Зависимости между факторной и результативной переменными могут быть прямыми или обратными:
1) при наличии между переменными прямой связи направление изменения результативной переменной совпадает с направлением изменения факторной переменной (с увеличением Х увеличивается и Y);
2) при наличии между переменными обратной связи направление изменения результативной переменной противоположно направлению изменения факторной переменной (с увеличением Х переменная Y уменьшается).
Корреляционные зависимости в зависимости от количества факторных переменных делятся на однофакторные (простые) и многофакторные (множественные):
1) однофакторные корреляционные связи – это связи между одной факторной переменной Х и одной результативной переменой Y;
2) многофакторные корреляционные связи – это связи между несколькими факторными Х1, Х2, …, Хn и одной результативной переменной Y.
Условным средним yx называется среднее арифметическое значений результативной переменной Y при условии, что Х = х. Тогда корреляционную зависимость результативной переменной Y от Х можно определить как функциональную зависимость условной средней yx от х:

Полученное равенство называется уравнением регрессии Y на Х, а функция f(x) называется регрессией Y на Х.
Регрессией называется функция, позволяющая по величине одной корреляционно связанной переменной рассчитать среднюю величину другой переменной.
Основные задачи , решаемые с помощью корреляционно-регрессионного анализа:
1) определение формы корреляционной зависимости, т. е. вида функции регрессии (линейной, степенной и др.);
2) оценка степени тесноты корреляционной связи между переменными либо на основе графика, либо на основе расчета специальных показателей тесноты связи.