Захватова Ольга С. - Атлас искусственного интеллекта: руководство для будущего стр 4.

Шрифт
Фон

Подобно множеству способов создания атласа, существует немало вариантов будущего использования ИИ в мире. Расширение сферы применения систем ИИ может показаться неизбежным, хотя на самом деле это довольно спорный вопрос. Основополагающие концепции в области ИИ не возникают автономно, а формируются на основе определенного набора убеждений и перспектив. Главные разработчики современного атласа ИИ это небольшая и однородная группа людей, базирующаяся в нескольких городах и работающая в отрасли, которая в настоящее время является самой богатой в мире. Подобно средневековым европейским mappae mundi (с лат. карта мира), которые иллюстрировали религиозные и классические концепции в той же степени, что и координаты, атласы, созданные индустрией ИИ, являются политическими интервенциями, а не нейтральным отражением мира. Настоящая книга написана в противовес логике колониального картографирования и охватывает различные истории, места и базы знаний, чтобы лучше понять роль ИИ в мире.

Топографии вычислений

Как на данный момент, в двадцать первом веке, концептуализируется и конструируется ИИ? Что стоит на кону в повороте к искусственному интеллекту, и какие виды политики содержатся в системах отображения и интерпретации мира? Каковы социальные и материальные последствия включения ИИ в системы принятия решений таких социальных институтов, как образование и здравоохранение, финансы, государственная деятельность, взаимодействие на рабочем месте и прием на работу, системы коммуникаций и правосудия? Эта книга не рассказ о коде и алгоритмах или о последних достижениях в области компьютерного зрения и обработки естественного языка; этим занимаются многие другие книги. Это также не этнографический рассказ об отдельном сообществе и влиянии ИИ на их опыт работы, жилья или медицины хотя нам, конечно, нужно больше таких работ.

Напротив, это расширенный взгляд на искусственный интеллект как на добывающую промышленность. Создание современных систем ИИ зависит от использования энергетических и минеральных ресурсов планеты, дешевой рабочей силы и данных в больших масштабах. Чтобы увидеть это в действии, мы отправимся в серию путешествий по местам, которые раскрывают зачатки ИИ.

В первой главе мы начинаем с литиевых шахт в Неваде, одного из многих мест добычи полезных ископаемых, необходимых для питания современных вычислений. Именно в шахтах мы в самом буквальном смысле наблюдаем за добывающей политикой ИИ. Спрос технологического сектора на редкоземельные минералы, нефть и уголь огромен, но истинные затраты на их добычу никогда не покрываются самой отраслью. Что касается программного обеспечения, то создание моделей для обработки естественного языка и компьютерного зрения требует огромного количества энергии, а конкуренция за создание более быстрых и эффективных моделей привела к появлению вычислительно жадных методов, которые увеличивают углеродный след ИИ. От последних оставшихся деревьев в Малайзии, вырубленных с целью производства латекса для первых трансатлантических подводных кабелей, до гигантского искусственного озера токсичных отходов во Внутренней Монголии, мы прослеживаем экологические и человеческие места рождения планетарных вычислительных сетей и видим, как они продолжают терраформировать планету.

Во второй главе показано, как человеческий труд способствует созданию искусственного интеллекта. Мы рассмотрим цифровых сдельщиков, которым платят за выполнение микрозадач, чтобы системы данных выглядели более интеллектуальными, чем они есть на самом деле[31]. Наше путешествие приведет нас на склады Amazon, где работникам приходится успевать за алгоритмическим ритмом огромной логистической империи. Мы посетим чикагских рабочих-мясников на комбинате, где туши животных подвергаются вивисекции и готовятся к употреблению. И мы услышим рабочих, протестующих против систем искусственного интеллекта, внедряемых для усиления наблюдения и контроля.

Труд это также и время. Координация действий людей с повторяющимися движениями роботов и линейного оборудования всегда предполагала управление телом в пространстве и времени[32]. От изобретения секундомера до TrueTime от Google процесс координации времени лежит в основе управления рабочим местом. Технологии ИИ как требуют, так и создают условия для все более детальных и точных механизмов управления временем. Координация требует все более подробной информации о том, что делают люди, как и когда.

Третья глава посвящена роли данных. Все общедоступные цифровые материалы включая личные или потенциально опасные данные собираются для тренировочных наборов, которые используются для создания моделей ИИ. Существуют гигантские базы данных, полные селфи людей, жестов рук, людей за рулем автомобилей, плача младенцев, разговоров в новостных группах 1990-х годов, и все это собрано для улучшения алгоритмов, выполняющих такие функции, как распознавание лиц, предсказание языка и обнаружение объектов. Когда эти коллекции больше не рассматриваются как личный материал людей, а просто как инфраструктура, конкретное значение или контекст изображения или видео считается неважным. Помимо серьезных вопросов неприкосновенности частной жизни и продолжающегося капитализма наблюдения, нынешняя практика работы с данными в ИИ вызывает глубокие этические, методологические и эпистемологические проблемы[33].

И как же все эти данные используются? В четвертой главе мы рассмотрим практику классификации в системах искусственного интеллекта, то, что социолог Карин Кнорр Цетина называет «эпистемическим механизмом»[34]. Мы увидим, как современные системы используют ярлыки для предсказания человеческой личности, обычно используя бинарный пол, эссенциализированные расовые категории, проблематичные оценки характера и кредитоспособности. Знак заменяет систему, прокси заменяет реальность, а игрушечная модель заменяет бесконечную сложность человеческой субъективности. Рассматривая создание классификаций, мы увидим, как технические схемы навязывают иерархию и увеличивают неравенство. Машинное обучение представляет нам режим нормативных рассуждений, которые, когда они набирают силу, приобретают форму мощной управляющей рациональности.

Отсюда мы отправляемся в горные города Папуа-Новой Гвинеи, чтобы изучить историю распознавания аффектов идею о том, что мимика лица является ключом к раскрытию внутреннего эмоционального состояния человека. В пятой главе рассматривается утверждение психолога Пола Экмана о том, что существует небольшой набор универсальных эмоциональных состояний, которые можно прочитать непосредственно по лицу. Технологические компании сейчас внедряют эту идею в системы распознавания аффектов, что является частью отрасли, стоимость которой, по прогнозам, превысит семнадцать миллиардов долларов[35]. Однако вокруг распознавания эмоций существует значительное количество научных противоречий, которые в лучшем случае неполны, а в худшем вводят в заблуждение. И все же, несмотря на нестабильность предпосылок, эти инструменты быстро внедряются в системы найма, образования и охраны правопорядка.

В шестой главе мы рассмотрим, как системы искусственного интеллекта используются в качестве инструмента государственной власти. Военное прошлое ИИ и его настоящее сформировали практику наблюдения, сбора данных и оценки рисков. Глубокие взаимосвязи между технологическим сектором и военным сейчас сдерживаются, чтобы соответствовать сильной националистической повестке дня. Тем временем внеправовые инструменты, используемые разведывательным сообществом, перешли из военной сферы в коммерческий технологический сектор и используются в классах, полицейских участках, на рабочих местах и в бюро по трудоустройству. Военная логика, сформировавшая системы ИИ, теперь является частью работы муниципальных органов власти, и она еще больше искажает отношения между государствами и субъектами.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3

Похожие книги