Крылов Валерий Александрович - Каталитический риформинг бензинов. Теория и практика стр 6.

Шрифт
Фон

Δ

г

G

o

Отсюда константа равновесия может быть определена как произведение констант равновесия реакций изомеризации и дегидрирования или как exp (–Δ

г

G

o

K

p

5



Рис. 7. Изменение энергия Гиббса


в реакции ароматизации метилциклопентана

Механическим аналогом сопряженных химических реакций является устройство, приведенное на рис. 8 [31].

Устройство представляет собой два груза, соединенных канатом.

Сам по себе подъем легкого груза невозможен, это не самопроизвольный процесс, но он становится возможным, если сопровождается опусканием тяжелого груза. Условием, необходимым для сопряжения двух процессов, является наличие механической связи между двумя грузами.



Рис. 8. Механический аналог сопряженных


химических реакций

В химической системе такое сопряжение достигается, если продукт одной химической реакции может расходоваться в другой.

Рассмотренный случай (см. рис. 6) является одним из многих примеров того, как одиночная реакция, невозможная с позиции термодинамики, становится возможной при сопряжении с другой реакцией, обеспечивающей снижение энергии Гиббса для суммарного превращения.

Влияние температуры и давления на константы химического равновесия. Связь изменения температуры и K

р

dlnK

р

dTHRT

2

где ΔH – тепловой эффект реакции. Характер зависимости определяется знаком и величиной теплового эффекта реакции.

В соответствии с уравнением Вант – Гоффа увеличение температуры приводит к увеличению K

р

H

Этот же результат вытекает из принципа Ле Шателье: внешнее воздействие на систему, находящуюся в равновесии, приводит к таким изменениям в системе, которые компенсируют эффект внешнего воздействия.

Наибольшее влияние изменение температуры оказывает на реакции дегидрирования нафтенов и дегидроциклизации парафинов, которые имеют самые высокие значения теплового эффекта. Так, при температуре 800 К изменение энергии Гиббса для суммарной реакции превращения метилциклопентана в бензол составляет, по данным табл. 2, 16,8 + (–96,6) = –79,8 кДж/моль. Этому значению соответствует K

р

При снижении температуры до 500 К изменение потенциала становится равным +26,1 кДж/моль, и константа равновесия снижается до 1,29; это означает, что в данных условиях суммарная реакция меняет направление и проходит с образованием метилциклопентана.

Ниже приведены расчетные значения энергии Гиббса для температуры в интервале 500–800 К:


Т, К

Δ

г

G


800

–79,8


700

–44,2


600

–8,8


500

+26,1


Для наглядности ниже представлены графики изменений потенциалов для двух температур: 800 и 500 К (рис. 9).




Рис. 9. Изменения потенциалов Гиббса


для двух температур: а – 800 К; б – 500 К

Константа равновесия реакции дегидрирования алканов при температурах платформинга имеет низкое значение, в связи с этим олефины в заметных количествах появляются в продуктах риформинга только при проведении процесса при очень низком давлении, реализуемом на установках платформинга с непрерывной регенерацией катализатора.

Вместе с тем, поскольку эндотермичность реакции обусловливает увеличение константы равновесия при повышении температуры, при достаточно высоких температурах олефины могут быть основным продуктом превращения. Примерами таких процессов являются процессы дегидрирования и термический риформинг.

В целом повышение температуры процесса благоприятствует протеканию основных реакций дегидрирования и дегидроциклизации, что приводит к более глубокой ароматизации сырья.

Давление и константы равновесия связаны уравнением


где K

y

Давление не влияет на величину константы равновесия K

р

K

y

Давление не оказывает влияния на состав равновесной смеси для реакций изомеризации и крекинга, для которых сумма стехиометрических коэффициентов в химическом уравнении равна нулю, в этом случае K

y

K

р

Наиболее чувствительны к изменению давления реакции дегидрирования нафтенов и дегидроциклизации парафинов. Рост давления оказывает негативное влияние на эти реакции и уменьшает термодинамически возможную степень ароматизации сырья платформинга.

Эффект изменения давления показан на примере расчета состава равновесной смеси для превращения циклогексана при давлении 30 и 10 атм (температура 800 К).

Схема реакций:



Для расчета мольных долей четырех компонентов равновесной смеси используется система уравнений

Y

цг

Y

б

Y

2

3

K

р

1

Y

мцп

K

р

2

Y

цг

1

Y

Н

2

Y

б

Y

цг

Y

мцп

Y

б

Y

2

где K

р

1

K

р

2

После упрощения получаем уравнение для расчета Y

б

4Y

б

Y

б

3

3

K

р

2

K

р

1

3

K

р

1

Данное уравнение решается методом подбора.

Результаты расчета в пересчете на смесь углеводородов представлены ниже:

– для давления 30 атм:

Y

б

Y

цг

Y

мцп

– для давления 10 атм:

Y

б

Y

цг

Y

мцп

Как следует из расчетов, конверсия углеводородов в бензол при 30 атм достигает 90 %, снижение давления до 10 атм, уровня, используемого на установках с непрерывной регенерацией катализатора, – увеличивает равновесную конверсию практически до 100 %.

В связи с этим снижение давления процесса является главным инструментом, обеспечивающим более глубокую ароматизацию сырья.

Парафиновые углеводороды составляют основную и самую низкооктановую часть сырья платформинга. Это обусловлено тем, что бензиновые фракции прямой перегонки нефти содержат углеводороды нормального строения и слабо разветвленные изомеры, имеющие небольшие октановые числа.

Ниже представлены октановые числа по исследовательскому методу для изомерных гексанов, гептанов и октанов:

н-гексан – 24,8;

2-метилпентан – 73,4;

3-метилпентан – 74,5;

2,2-диметилбутан – 91,8;

2,3-диметилбутан – 104,3;

н-гептан – 0;

2-метилгексан – 42,4;

3-метилгексан – 56,0;

2,2-диметилпентан – 89,0;

2,3-диметилпентан – 91,4;

2,4-диметилпентан – 83,1;

3,3-диметилпентан – 83,0;

2,2,3-триметилбутан – 112,0;

2-метилгептан – 21,7;

4-метилгептан – 26,7;

3-этилгексан – 33,5;

2,2-диметилгексан – 72,5;

2,4-диметилгексан – 65,2;

2,5-диметилгексан – 55,5;

3,4-диметилгексан – 76,3;

2,2,4-триметилпентан – 100,0;

2,3,3-триметилпентан – 106,1;

2,3,4-триметилпентан – 102,7.


Изомеризация позволяет увеличить октановые числа продукта риформинга, что представляет большой интерес в связи с ограничением содержания ароматических углеводородов в автомобильных бензинах (максимальное текущее значение 35 % объемн.).

В табл. 2 представлены термодинамические данные для расчета реакции изомеризации н-гексана в 2-метилпентан.

Реакция имеет при 800 К небольшое отрицательное значение Δ

г

GK

р

Ниже представлен расчет равновесного состава смеси с учетом образования всех возможных изомеров н-гексана (рис. 10).



Рис. 10. Схема реакций с образования изомерных гексанов:


2-МП – 2-метилпентан; 3-МП – 3-метилпентан;


2,2-ДМБ – 2,2-диметилбутан; 2,3-ДМБ – 2,3-диметилбутан

В соответствии со схемой реакций в равновесной смеси находится пять компонентов, при этом справедливы следующие соотношения для парциальных давлений компонентов

Р

н-г 

Р

2

МП

K

р

 2

МП

Р

3

МП

K

р

3

МП

Р

2,2

ДМБ

K

р

2,2

ДМБ


= Р

2,3

ДМБ

K

р

2,3

ДМБ

Р

нг

Р

2

МП

Р

3

МП

Р

2,2

ДМБ

Р

2,3

ДМБ

Р

Р

нг

K

р

2

МП

K

р

3

МП

K

р

2,2ДМБ

K

р

2,3

ДМБ

Отсюда мольные доли компонентов:

Y

нг

K

р

2МП

K

р

3МП

K

р

2,2ДМБ

K

р

2,3ДМБ

Y

2

МП

K

р

2

МП

K

р

2МП

K

р

3МП

K

р

2,2ДМБ

K

р

2,3ДМБ

Y

3

МП

K

р

3МП/1

K

р

2МП

K

р

3МП

K

р

2,2ДМБ

K

р

2,3ДМБ

Y

2,2ДМБ

K

р

2,2ДМБ

K

р

2МП

K

р

3МП

K

р

2,2ДМБ

K

р

2,3ДМБ

Y

2,3

ДМБ

K

р

2,3

ДМБ

K

р

2МП

K

р

3МП

K

р

2,2

ДМБ

K

р

2,3ДМБ

Результаты расчета равновесных составов для двух температур – 800 К и 700 К, являющихся границами рабочих температур платформинга, – представлены в табл. 3.

Таблица 3

Состав равновесных смесей для двух температур


Компонент

700 К

800 К


н-гексан

2МП

3МП

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3