Иван Андреевич Трещев - Методы и модели защиты информации. Часть 1. Моделироваание и оценка стр 5.

Книгу можно купить на ЛитРес.
Всего за 51.9 руб. Купить полную версию
Шрифт
Фон

Идея проекта CVE была предложена Мэнном (Mann) и Кристли (Christley) [24] и предлагает унифицированный способ представления определений уязвимостей. На данный момент, проект является стандартом де—факто описания уязвимостей, и его применение является желательным в таксономиях прикладного направления.

Дополнительно, в таксономии Хэнсмэна предполагается ситуация, когда на момент классификации атаки не существует ее описания (CVE—номера) уязвимости. В этом случае, предлагается использовать общие классы категорий атак процессной таксономией компьютерных и сетевых атак Ховарда [13], – уязвимость в реализации (логические ошибки в текстах программ), уязвимость в проекте, уязвимость в конфигурации. В данной таксономии рассматривается в качестве центрального понятия инцидент – совокупность атакующего, атаки и цели атаки. Главным ее отличием является наличие структурных элементов: инцидентов и события, – совокупности действия и целевого объекта. Предусматривается возможность комбинирования событий. Таким образом, в инциденте возможно вложение последовательность атак. Полезным свойством таксономии Ховарда является возможность описания неатомарных (составных) атак и учет их сценариев проведения. Однако, как указывается в тезисах докторской диссертации Лауфа, процессная таксономия привносит двусмысленность при классификации атаки на практике, так как нарушается свойство взаимного исключения.

4. Четвертое измерение используется для классификации атаки по наличию и виду полезной нагрузки (payload) или реализуемого эффекта. В большинстве случаев, в результате своей работы, с атакой привносится дополнительный эффект. Например, «вирус», используемый для установки потайного входа (backdoor) очевидно остается «вирусом», но несет в качестве полезной нагрузки программу потайного входа.

В качестве классов категорий полезной нагрузки, Хэнсмэн выделяет:

– Полезная нагрузка первого измерения – собственно полезная нагрузка является атакой;

– Повреждение информации;

– Раскрытие информации;

– Кража сервиса (подмена сервиса);

– Subversion – полезная нагрузка предоставляет контроль над частью ресурсов цели и использует их в своих целях.

В 1995 году, Бишоп [10] предложил классификацию относительно уязвимостей для UNIX—систем. Отличительная особенность его работы заключается в создании принципиально новый схемы классификации. Шесть «осей координат» представляются компонентами [7], [10]:

– Природа уязвимости – описывается природа ошибки в категориях протекционного анализа;

– Время появления уязвимости;

– Область применения – что может быть получено через уязвимость;

– Область воздействия – на что может повлиять уязвимость;

– Минимальное количество – минимальное количество этапов, необходимых для атаки;

– Источник – источник идентификации уязвимости.

Особенностью классификации Бишопа является использование подхода на основе концепции измерений, вместо табличных и древовидных классификаций. Каждая координатная ось представляется классификационной группой, отсчеты по которой являются элементы группы, а уязвимость описывается в виде некоторой точке в «пространстве» координатных осей. Данная схема именуется таксономией уязвимостей в концепции измерений. Таксономия Бишопа является ярким представителем групп таксономий уязвимостей.

Важной основой для разработки новых таксономий уязвимостей в области информационной безопасности послужили работы Бисби (Bisbey) и Холлингворса (Hollingworth), посвященные протекционному анализу [25], а также работы по исследованию защищенных операционных систем (RI SOS) Аббота (Abbott), Вебба (Webb) и др. [4]. Обе таксономии фокусируют внимание на классифицировании ошибок в программном обеспечении и приблизительно схожи между собой.

Непригодность практического применения таксономий [25], [4] в своей дальнейшей работе описали Бишоп и Бэйли [11] . Проблемой предложенных таксономии является двусмысленность в определениях своих классов, то есть в определениях нескольких классов некоторые уязвимости равносильны, что приводит к нарушению правила взаимоисключения между классами, и тем самым представляются малопригодными в прикладном смысле. Однако, данные работы [25], [4] заложили основу ценным концепциям, которые получили свое развитие в последующих исследованиях [10], [26], [].

Комбинированный подход к классификации уязвимостей прослеживается и в нормативно—распорядительной документации ФСТЭК России. В классификации уязвимостей, предлагаемой базовой моделью угроз ИСПДн (рисунок 1), также применяется комбинированный подход, основанный на идеях работ Ховарда, Хэнсмэна, Бишопа и др.

Более того, для систематизации уязвимостей в соответствии с классификацией на практике, в документах предлагается использовать существующие зарубежные базы данных (БД) уязвимостей в качестве источников информации. Наиболее распространенной базой данных об уязвимостях является БД National Vulnerability Database (NVD), которая основывается на объединении информации из более ранних баз данных (CPE, CVE, и др.)

1.3 Математические модели систем защиты информации

В работе [23] рассматривается вероятностная модель, в которой система защиты информации (СЗИ) представлена неконтролируемыми преградами вокруг предмета защиты. В общем случае модель элементарной защиты предмета может быть в виде защитных колец (рисунок 2). В качестве предмета защиты выступает один из компонентов информационной системы (ИС).


Рисунок 2 – Модель элементарной защиты


Вероятность невозможности преодоления преграды нарушителем обозначается как Рсзи, вероятность преодоления преграды нарушителем через Рнр соответственно сумма вероятностей двух противоположных событий равна единице, то есть:




В модели рассматриваются пути обхода преграды. Вероятность обхода преграды нарушителем обозначается через Робх, которое представляется в виде:

(1)



В случае, когда у преграды несколько путей обхода:

(2)



где – k количество путей отхода.

Для случая, когда нарушителей более одного, и они действуют одновременно (организованная группа) по каждому пути, это выражение с учетом совместности событий выглядит как:

(3)



Учитывая, что на практике в большинстве случаев защитный контур (оболочка) состоит из нескольких «соединенных» между собой преград с различной прочностью, рассматривается модель многозвенной защиты (рисунок 3).

Выражение прочности многозвенной защиты из неконтролируемых преград, построенной для противостояния одному нарушителю, представлено в виде:

(4)



где – Рсзи прочность i—й преграды, Робх – вероятность обхода преграды по k —му пути.


Рисунок 3 – Модель многозвенной защиты


Выражение для прочности многозвенной защиты, построенной из неконтролируемых преград для защиты от организованной группы квалифицированных нарушителей—профессионалов, с учетом совместности событий представляется в виде:

(5)



В случае, когда какие—либо преграды дублируются, а их прочности равны соответственно Р123,…,Рi то вероятность преодоления каждой из них нарушителем соответственно равна (1 – Р1), (1 – Р2), (1 – Р3),…, (1 – Рi).

Учитывая, что факты преодоления этих преград нарушителем события совместные, вероятность преодоления суммарной преграды нарушителем формально представляется в виде:

(6)



Вероятность невозможности преодоления дублирующих преград (прочность суммарной преграды) как противоположное событие определяется выражением:

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3