Различают аксо-соматические синапсы, сформированные мембранами аксона и тела (сомы) нейрона, аксо-дендритные, состоящие из мембраны аксона и дендрита, и аксо-аксональные, при которых аксон подходит к другому аксону. Синапс между аксоном и мышечным волокном называется нейромышечной кольцевой пластинкой.
Молекулы медиатора находятся в везикулах – особых пузырьках, расположенных в аксональной терминали (окончании аксона). ПД, достигая аксональной терминали, становится сигналом открытия кальциевых каналов, которые вызывают синхронный эндоцитоз – координированное выделение медиатора из везикул и поступление их в синаптическую щель. Медиатор связывается с рецептором, находящимся на постсинаптической мембране, который инициирует в постсинаптической клетке те или иные изменения в зависимости от вида рецептора. Медиатор, взаимодействуя с рецептором, может способствовать открытию ионных каналов (натрий-калиевых или кальциевых) или через аденилатциклазный механизм активировать внутриклеточного посредника – цАМФ (циклический аденозинмонофосфат) и цГМФ (циклический гуанозинмонофосфат). При открытии натрий-калиевого канала натрий поступает внутрь клетки, что приводит к деполяризации участка мембраны постсинаптического нейрона. Каждый синапс делает лишь незначительный вклад в этот процесс. Однако каждый нейрон непрерывно интегрирует до 1000 синаптических входов, которые суммируются нелинейно (рис. 1.16) и при достижении порогового потенциала вызывают ПД, т. е. распространяющийся вдоль аксона потенциал.
Рис. 1.15. Структура синапса (а); фотография синапса, увеличенного под электронным микроскопом в тысячи раз (выполненная D. D. Kinkel) (б); фотография аксональных терминалей на теле аксона (в) (Kalat, 1992).
Рис. 1.16. Временная и пространственная суммация импульсов (Kalat, 1992).
Синаптическая задержка – время между началом пресинаптической деполяризации и постсинаптической реакцией – составляет 0,5 мс. Всего лишь 1/10 часть этого времени обусловлена диффузией (проникновением) медиатора через синаптическую щель к постсинаптической мембране. Большая же часть времени тратится на открывание Са
2+
кальмодулиномСогласно принципу английского ученого Г. Дейла, постулирующего метаболическое единство нейрона, во всех окончаниях нейрона выделяется один и тот же медиатор. В настоящее время доказано, что этот принцип касается только пресинаптического единства нейрона. Эффекты, которые вызываются данным медиатором, могут быть различны и зависят от клеток-мишеней (в данном случае постсинаптических нейронов). Знак синаптического действия – повышение постсинаптического потенциала или его падение – определяется не медиатором, а свойствами рецепторов на постсинаптической клетке.
Постсинаптические рецепторы одного пресинаптического нейрона могут фармакологически различаться и контролировать разные ионные каналы. Одна постсинаптическая клетка может иметь более одного типа рецепторов для данного медиатора, и каждый из этих рецепторов контролирует отличный от других механизм ионной проводимости.
Кроме нейронов, суммирующих и передающих информацию к другим клеткам, описаны так называемые пейсмекерные нейроны, способные самостоятельно генерировать электрические импульсы (Alving, 1968). Активность таких нейронов характеризуется синусоидальными колебаниями частотой 0,1–10 Гц и амплитудой 5–10 мВ. Эти нейроны при отсутствии любого внешнего воздействия обеспечивают периодическую генерацию ПД и передачу возбуждения другим нейронам.
Медиаторы
В начале XX века группа английских физиологов, возглавляемая Дж. Лэнгли, показала, что электрическая стимуляция вегетативных нервов вызывает изменения в органах, иннервируемых этими нервами. Оказалось также, что такие изменения можно вызвать инъекцией в организм экстрактов надпочечников. Дж. Лэнгли предположил, что клетки, иннервируемые вегетативными нервами, имеют две рецептивные субстанции – тормозную и возбуждающую.
На основании этих данных Т. Эллиот в 1905 г. выдвинул предположение, что возбуждающие импульсы в вегетативных нервах вызывают выделение адреналина. В 1921 г. австрийский ученый О. Леви обнаружил, что тормозное влияние блуждающего нерва на деятельность сердца опосредуется специфическим веществом, позднее идентифицированным как ацетилхолин. Г. Дейл привел веские аргументы в пользу того, что ацетилхолин является медиатором в вегетативных ганглиях и нервно-мышечных соединениях. Однако доказать наличие синаптической передачи с помощью медиатора, а не электрического потенциала стало возможным только в 50-х годах, когда исследователи начали использовать микроэлектроды и электронный микроскоп.
Все медиаторные соединения – это низкомолекулярные водорастворимые (дипольные) амины или аминокислоты и родственные им вещества. Ацетилхолин и катехоламины синтезируются из циркулирующих в крови предшественников, тогда как аминокислоты и пептиды в конечном счете образуются из глюкозы. Свидетельством консерватизма живой природы является то, что, несмотря на различие циркуляторных систем и метаболических путей, беспозвоночные и позвоночные животные в равной степени используют большинство общих медиаторов (табл. 1.3).
Таблица 1.3.
Характеристика некоторых медиаторов
Число пептидов, для которых доказаны медиаторные свойства, постоянно растет. Многие из этих веществ содержат от 2 до 10 аминокислот, что соответствует размеру, с одной стороны, мелких аминокислотных медиаторов, с другой – гормонов. Обилие пептидов создает впечатление неоднородности этой группы веществ. В то же время нарастающая информация о их роли в организме позволяет увидеть универсальные принципы их действия. Предполагается, что нейроэндокринные клетки, секретирующие пептиды, первыми появились в эволюции примитивных нервных систем. По-видимому, нейропептиды, производимые ими, достаточно консервативны, поскольку, как уже упоминалось, одинаковые вещества или близкие последовательности аминокислот обнаружены у филогенетически различных ветвей животных – беспозвоночных и позвоночных. Многие из них найдены не только в мозге, но и, например, в кишечнике. Есть предположение, что все пептид эргические клетки связаны общностью эмбрионального происхождения. Пептиды по сравнению с другими медиаторами оказывают свое действие в чрезвычайно низких концентрациях.
С тех пор как в 1921 г. был идентифицирован первый медиатор, число их в арсенале науки постоянно увеличивается и в настоящее время составляет около 50. Многие биологически активные вещества имеют сходную с ними структуру. Они могут усиливать действие медиаторов (такие вещества называются агонистами) или подавлять их активность (антагонисты). Например, лекарственные препараты, снимающие тревогу (седуксен и др.), усиливают действие тормозного нейромедиатора – гамма-аминомасляной кислоты. Антидепрессанты (например, прозак) являются агонистами серотонина. Кокаин усиливает действие дофамина. Он связывается с белком, удаляющим дофамин из места его активности, тем самым увеличивая время его действия. Никотин активирует рецепторы ацетилхолина. Энкефалины и эндорфины являются природными лигандами морфиновых рецепторов: в норме именно они связываются с рецепторами, с которыми в особых условиях – при употреблении наркотика – взаимодействует морфин.