Николаева Елена Ивановна - Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник стр 6.

Шрифт
Фон

Глия

Нейроны составляют лишь 25 % от всех клеток мозга, остальные 75 % клеток относятся к нейроглии (glia – клей, греч.). Это название было дано в 1846 г. Р. Вирховым, полагавшим, что глия – это цементирующая основа для объединения нервных клеток. В среднем глиальные клетки составляют по величине примерно 1/10 размера нейрона. В отличие от нейронов они способны делиться. Именно благодаря им происходит увеличение объема мозга ребенка, составляющего при рождении примерно четверть мозга взрослого. Возникновение опухолей в мозге также связано не с активностью нейронов, а с бесконтрольным делением глиальных клеток.

Глиальные клетки имеют множество функций, но они не передают информацию, как это делают нейроны (рис. 1.12). Мембранный потенциал глиальных клеток выше, чем у нейронов, и определяется разностью концентраций ионов калия во внутри- и внеклеточном пространстве. Это отличает их от нейронов, мембранный потенциал которых формируется как разностью концентраций ионов калия, так и ионов натрия. При возбуждении нейрона из него одновременно выходят ионы К

+

+

1. Два типа глиальных клеток образуют миелиновую оболочку для аксонов: олигодендроциты формируют ее в головном и спинном мозге, а Шванновские клетки – в периферической нервной системе. Они обертываются вокруг аксона, изолируя его и ускоряя проведение импульса. Отростки одной глиальной клетки обертываются вокруг разных аксонов, что может способствовать интеграции работы сразу нескольких нейронов.


Рис. 1.12. Формы некоторых глиальных клеток.


2. Астроглия и микроглия очищают мозг от погибших нейронов и от ненужного материала, поглощая его.

3. Астроглия также имеет опорную функцию, заполняя промежутки между нейронами и формируя тем самым внутренний скелет.

4. Радиальная глия помогает миграции нейронов и направляет аксоны в сторону расположения их мишеней в период эмбрионального развития. Аналогичным образом Шванновские клетки при повреждениях направляют восстанавливающийся аксон к месту иннервации. Они участвуют и в самом востановлении поврежденных нервов. Было показано, что после повреждения аксона Шванновская клетка может заменять утраченное нервное окончание в мышце и даже выделять медиатор (Хухо, 1990). В зрелом мозге радиальная глия перерождается в другие виды глии, осуществляя опорную функцию.


Рис. 1.13. Гематоэнцефалический барьер


5. Астроглия формирует уникальный защитный слой между нейроном и кровеносным сосудом, так что все вещества из крови могут попасть в нейрон только через глиальную клетку. Этот барьер называется гематоэнцефалическим (haima – кровь, enkephalos – мозг, греч.). Гематоэнцефалический барьер могут преодолевать только маленькие молекулы, например ионы, глюкоза, незаменимые аминокислоты и жирные кислоты (рис. 1.13). Благодаря этому большие молекулы, токсины, вирусы и микробы не могут проникнуть в нейрон, что приводит к значительному повышению толерантности (устойчивости) мозга к вирусным инфекциям.

Существует только одна область мозга, где происходит нарушение гематоэнцефалического барьера, – гипоталамус. В нем находятся клетки, секретирующие либерины и статины, управляющие выделением гормонов из гипофиза. Сосуды непосредственно подходят к секретирующим нейронам, выделяющим свои биологически активные вещества прямо в кровь. Ввиду функциональной необходимости гематоэнцефалический барьер в этом месте нарушается. Гипоталамус можно назвать «ахиллесовой пятой» мозга, поскольку только здесь возможно проникновение инфекций в нервную систему человека.

Наличие гематоэнцефалического барьера при инфекционных поражениях мозговой ткани может препятствовать ее лечению путем введения антибиотиков в кровь. Молекулы лекарства не могут попасть в мозг в нужном количестве и не имеют возможности подойти непосредственно к очагу инфекции. Единственным выходом из этой ситуации остается пункция: лекарство вводится в позвоночный канал, связанный с желудочками мозга, через которые и попадает к очагу инфекции.

Передача информации в ЦНС

Информация в мозге передается по аксонам в виде коротких электрических импульсов, называемых потенциалами действия (ПД). Их амплитуда составляет около 100 мВ, длительность – 1 мс. ПД возникают в результате движения положительно заряженных ионов натрия через клеточную мембрану из внеклеточной жидкости внутрь клетки по специальным натрий-калиевым каналам. Концентрация натрия в межклеточном пространстве в 10 раз больше внутриклеточной.

Существует пассивный и активный транспорт ионов в нейрон. Пассивный (то есть не связанный с расходом энергии) происходит через раздельные Na

+

+

+

+

В состоянии покоя поддерживается трансмембранная разность потенциалов около 70 мВ (цитоплазма заряжена отрицательно относительно внешней среды). Мембрана практически непроницаема для Na

+

+

+

+

Несмотря на то, что натрий-калиевый насос выбрасывает ионы натрия из клетки, они очень медленно проникают в клетку. Физическая или химическая стимуляция, деполяризующая мембрану, т. е. снижающая разность потенциалов, увеличивает ее проницаемость для ионов натрия. Поток ионов натрия внутрь клетки еще сильнее деполяризует мембрану (рис. 1.14). Если нейрон возбуждается достаточно интенсивно, то натрий-калиевый насос не успевает предоставить нужное количество натрия для деполяризации, и в этом нейрону помогает глиальная клетка (рис. 1.12).


Рис. 1.14. На высоте активности нейрона, когда потребности в ионах натрия больше, чем это обеспечивает натрий-калиевый насос, астроцит действует как насос, перекачивая натрий из ближайшего сосуда (Kalat,1992).


Когда достигается некоторое критическое значение потенциала, называемое пороговым, на уровне аксонального холмика нейрона возникает ПД – распространяющийся по аксону потенциал. При этом положительная обратная связь на уровне мембраны нейрона приводит к регенеративным сдвигам, в результате которых знак разности потенциалов изменяется на противоположный, т. е. внутреннее содержимое клетки становится заряженным положительно по отношению к внешней среде. Приблизительно через 1 мс проницаемость мембраны для натрия падает, натрий-калиевый насос выбрасывает натрий из клетки, и трансмембранный потенциал возвращается к своему значению в состоянии покоя – 70 мВ.

После каждого такого разряда нейрон становится на некоторое время рефрактерным (неспособным к активации), т. е. натриевая проницаемость мембраны в этот период не может изменяться. Это кладет предел частоте генерации ПД – не более 200 раз в секунду. Максимальная скорость распространения нервного импульса составляет приблизительно 100 м/сек. Это более чем в миллион раз меньше скорости, с которой электрический сигнал движется по медной проволоке. Таким образом, скорость распространения ПД сравнительно низка.

Синаптическая передача информации

Уже отмечалась важная роль мембраны в передаче информации в мозге. Мембрана представляет собой барьер для прохождения нервного импульса. Именно поэтому связи между нейронами опосредуются химическими передатчиками – нейромедиаторами (mediator – посредник, англ.), выделяющимися из окончаний аксонов в области специализированных межклеточных контактов – синапсов. Синапс представляет собой мембраны двух соседних нейронов (передающего информацию и получающего ее) и пространство между ними, которое называется синаптической щелью. Синаптическая щель – это пространство шириною около 20 нм между мембранами пресинаптической (мембрана нейрона, находящегося перед синаптической щелью) и постсинаптической (мембрана клетки, находящейся после синаптической щели) клеток (рис. 1.15).

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3