Роб Десалл - Чувства: Нейробиология сенсорного восприятия стр 21.

Шрифт
Фон

То, как вкус интерпретируется этим многослойным мозгом, прекрасно иллюстрирует, как именно интегрированы все три слоя. Вкус взаимодействует с нашей системой вознаграждения, или системой внутреннего подкрепления, посредством кортико-базальной гангло-таламо-кортикальной замкнутой системы, или петли, как называют ее нейроанатомы. Эта петля представляет собой набор путей в нервных тканях, которые пересекают главные отделы мозга, и работает она по круговой схеме: кора базальные ядра таламус. Наиболее значимые системы вознаграждения у позвоночных это нейроны, проводящие гамма-аминомасляную кислоту (ГАМК) и дофамин. ГАМК и дофамин две небольшие молекулы, которые проникают в мозг и взаимодействуют со встроенными в мембраны нейронов рецепторами, запуская потенциал действия. Дофаминовые нейроны, в частности, играют огромную роль в эволюции использования животными системы вознаграждения.

Удовольствие играет огромную роль в обучении организмов повторять то, что для них выгодно. Ведь если что-то приносит пользу и доставляет удовольствие, то организм снова и снова будет искать то, что вызвало эту реакцию: секс, что-то вкусное или, что приводит к ужасным долгосрочным последствиям, наркотик. Когда мы пробуем испорченный продукт, уровень дофамина в мозгу резко падает и желание есть нечто подобное тут же пропадает. А вот если в рот попадает лакомый кусочек, сладкий, вкусный или питательный, уровень дофамина возрастает, и система вознаграждений тут же откликается: «Хочу еще». Дофамин посылает нам сигнал съесть как можно больше, но действие его временно, и в какой-то момент мы чувствуем насыщение и перестаем заглатывать кусок за куском. Наркотики захватывают мозг именно по такой схеме. Вместо кратковременного всплеска дофамина концентрация в молекуле закрепляется на постоянном высоком уровне, что вызывает тягу ко все большему и большему количеству наркотика и в итоге приводит к пагубной зависимости.

Удовольствие играет огромную роль в обучении организмов повторять то, что для них выгодно. Ведь если что-то приносит пользу и доставляет удовольствие, то организм снова и снова будет искать то, что вызвало эту реакцию: секс, что-то вкусное или, что приводит к ужасным долгосрочным последствиям, наркотик. Когда мы пробуем испорченный продукт, уровень дофамина в мозгу резко падает и желание есть нечто подобное тут же пропадает. А вот если в рот попадает лакомый кусочек, сладкий, вкусный или питательный, уровень дофамина возрастает, и система вознаграждений тут же откликается: «Хочу еще». Дофамин посылает нам сигнал съесть как можно больше, но действие его временно, и в какой-то момент мы чувствуем насыщение и перестаем заглатывать кусок за куском. Наркотики захватывают мозг именно по такой схеме. Вместо кратковременного всплеска дофамина концентрация в молекуле закрепляется на постоянном высоком уровне, что вызывает тягу ко все большему и большему количеству наркотика и в итоге приводит к пагубной зависимости.

Запуск этой системы очень похож на обработку вкуса: все начинается с небольшого количества химического вещества или молекул, воздействующих на хеморецепторы. Вкус возникает из комбинации молекул, которые мы глотаем с пищей, с воздухом или напитками и обрабатываем вкусовыми рецепторами во рту. Затем информация с рецепторов передается в мозг, где интерпретируется. Вкус, различаемый рецепторами, бывает пяти основных видов: горький, сладкий, кислый, соленый и умами. Кроме того, учитывается жирность и содержание углеводов. Вкусовые рецепторы находятся преимущественно на языке, но есть они и в других местах, например в тканях дыхательных путей и в тонком кишечнике.



Рис. 4.1. Гистограмма показывает количество действующих, псевдо- и укороченных вкусовых рецепторов у разных позвоночных


Исследователи описали несколько видов вкусовых рецепторов, которые влияют на восприятие сладкого, горького и вкуса умами, и назвали их рецепторами TAS (по первым трем буквам английского слова taste вкус). Принцип действия TAS очень похож на работу обонятельных рецепторов, воспринимающих запахи. Рецепторы TAS1 воспринимают сладкий вкус и умами, а TAS2 горький вкус. Также выделены рецепторы для определения соленого и кислого вкусов, но о них известно меньше. Главный кандидат на роль рецептора для определения соленого это ген, который, как ни странно, задействован и в развитии поликистоза почек (PKD) и называется PKD2L1 (2L1 указывает тип гена PKD). Этот рецептор ионный канал, который также участвует в распознавании кислот. Рецепторы типа ионных каналов это белки, находящиеся в мембране нервной клетки и отвечающие за прохождение определенных видов ионов через клеточную мембрану. Формируя потенциал действия, эти ионные каналы запускают вкусовую реакцию, которая возникает, когда ионы проходят через мембрану. Другими рецепторными молекулами для определения кислого и соленого являются рецепторы натриевых каналов (SC), называемые SCNN, три из которых (SCNN1a, SCNN1b и SCNN1g) считаются основными переносчиками информации о соли и кислой среде. Разумеется, рецепторов для определения кислого и соленого может быть и больше. Как и в случае с обонятельными рецепторами, количество генов для этих сигнальных молекул, обнаруженных в геномах животных, представляет собой любопытный феномен. Человек обладает примерно семьюдесятью генами-идентификаторами сладкого, горького и умами (TAS1 и TAS2), и несколько его генов относятся к кислой и соленой категориям. А вот животный мир гораздо разнообразнее в том, что касается вкуса (рис. 4.1).

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3