Константин Владимирович Ефанов - Теория расчета нефтяных аппаратов высокого давления стр 2.

Книгу можно купить на ЛитРес.
Всего за 119 руб. Купить полную версию
Шрифт
Фон

По мнению автора осесимметричная задача является содержит грубейшие ошибки в основании, состоящие в том, что по граням выделенного из стенки сегмента считается, что отсутствуют касательные напряжения [2].

Кроме того, при оценке прочности стенки оболочки, в осесимметричной теории упругости не ищутся главные напряжения. В формулу подставляются кольцевые и меридиональные напряжения. На основании того, что выделенный из стенки сегмент имеет симметрию, утверждается о том, что действующие на грани напряжения являются главными напряжениями.

Безухов утверждал [2,с.142], что так как меридиональная плоскость является плоскостью симметрии, то в меридиональной плоскости касательные напряжения отсутствуют и площадка на этой плоскости является главной площадкой.

Касательные напряжения присутствуют на меридиональных плоскостях и препятствуют вырыву элемента из стенки. Не принятие этого факта в расчетной модели, по которой выводятся все формулы осесимметричной теории является грубейшей некорректностью.



В теории упругости выделяется кубический элемент твердого тела и для него записываются условия равновесия и выполняется поиск главных площадок и главных напряжений [3], [4]. Тимошенко и Новожилов указывают о том, что для равновесия элемента необходимо, чтобы площади граней элемента были равны. Так как по граням действуют касательные напряжения, создающие моменты относительно осей, совпадающих с ребрами кубического элемента.

В осесимметричной задаче выделенный сегмент на виде в плане является трапецией с криволинейными основаниями, очерченными по сегментам окружности (радиусам).

Процитируем графику из работы Безухова сегмента в полярных координатах [2,с.143]:



Процитируем графику из работы Новожилова [3,с.75]:



Для ответа на поставленный вопрос о некорректности осесимметричной задачи теории упругости, необходимо в одной точке стенки оболочки совместить кубический и трапецеидальный сегменты, при этом в одних, например, прямоугольных координатах.

Ваша оценка очень важна

0

Дальше читают

Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3