Во-вторых, предлагая своё видение вопроса, каждый автор надеется всё-таки приобрести единомышленников и поэтому ведёт повествование и от имени тех, кто с большой долей вероятности в достаточно большой аудитории может его поддерживать. Если же он говорит «я», то он в некотором смысле противопоставляет себя возможным единомышленникам.
В-третьих, говорить от собственного лица, т.е. «якать» не совсем скромно, потому что каким бы новым не было мнение автора, он всегда в значительной степени опирается на опыт, накопленный другими авторами. Ссылки на них, конечно же, этически необходимы. Однако при этом в любом случае даже самое новое видение автора остаётся не совсем его собственным независимым мнением. Ведь даже свои элементарные знания он получает от общества.
И наконец, в-четвёртых, наверное, именно из приведённых выше соображений обращение «мы» общепринято в практике публичных работ.
4. ЯВЛЕНИЕ КОРИОЛИСА ФИЗИЧЕСКИЙ СМЫСЛ
Густав Гаспар Кориолис (17921843 гг.) французский математик и механик открыл силу инерции, названную впоследствии его именем. Она возникает в неинерциальной вращающейся системе отсчета. Он также вывел ее формулу.
Кориолис Г. Г.
Сила Кориолиса равна удвоенной радиальной скорости (Vр), умноженной на угловую скорость вращения (ω) и умноженную на синус угла между ними, а так же на испытуемую массу (M).
В классической физике описаны два варианта проявления силы и ускорения Кориолиса.
В первом варианте относительная скорость направлена вдоль радиуса вращающейся системы. Здесь действительно проявляется достаточно выраженное явление, которое в классической физике ассоциируют с ускорением Кориолиса. Однако в классической физике за силу и ускорение Кориолиса фактически принимается противо реакция на обычную тангенциальную силу, которая поддерживает угловую скорость переносного вращения. Поддерживающая сила это либо сила, действующая на движущееся радиально тело со стороны вращающихся масс системы, которые не изменяют своего радиального положения, либо любая внешняя сила, которая поддерживает переносную угловую скорость на постоянном уровне.
В отсутствие поддерживающей силы происходит естественное уменьшение угловой скорости при радиальном движении от центра вращения и естественное увеличение угловой скорости при радиальном движении к центру вращения. Это явление в классической физике называется законом сохранения углового момента, который якобы выполняется в отсутствие тангенциальных сил. Однако в реальной действительности угловой момент сохраняется именно за счёт тангенциальной составляющей радиальной силы. Это и есть основа явления Кориолиса. Поэтому тангенциальную составляющую радиальной силы мы называем истинной силой Кориолиса-Кеплера.
Проявляясь совместно с «обычной» истинной силой Кориолиса, фиктивная сила инерции Кориолиса одновременно противоречит, как физическому смыслу обычных сил, так и фиктивных сил инерции. Поскольку в классической динамике вращательного движения понятие об обычной истинной силе Кориолиса-Кеплера отсутствует, то в классической физике родилась самая странная сила не только из всех сил инерции, но и самая странная из всех обычных сил!!!
Классическая сила Кориолиса это либо, полу фиктивная обычная сила, либо, полу обычная фиктивная сила. Недаром физики всех народов, начиная со времён Кориолиса, и до сих пор спорят, реальна ли сила Кориолиса или же это только иллюзорная сила инерции.
Поскольку истинная сила Кориолиса-Кеплера в классической модели явления Кориолиса полностью скомпенсирована, то природа этого явления принципиально не может быть раскрыта в классической физике. В частности реальное ускорение и сила Кориолиса за счёт компенсации истинной силы Кориолиса-Кеплера вдвое меньше классического ускорения и силы Кориолиса. При этом классической силе Кориолиса соответствует только общее силовое напряжение, возникающее при противодействии поддерживающей силы и истинной силы Кориолиса-Кеплера.
Во втором варианте относительная скорость направлена перпендикулярно постоянному радиусу вращающейся системы. При этом абсолютная линейная скорость является величиной постоянной. Но это есть не что иное, как равномерное вращательное движение, динамику которого с классической же точки зрения определяет исключительно только центростремительное ускорение. Следовательно, либо никакого ускорения Кориолиса при тангенциальном относительном движении нет, либо классической физике следует пересмотреть свои взгляды, как на явление Кориолиса, так и на классическую модель вращательного движения.