Достижения это хорошо, но это демонстрация потенциальных возможностей. Давайте посмотрим, что добились нейронные сети в индустрии на основании отчёт об искусственном интеллекте Artificial Intelligence Index Report 2021.
Посмотрим на качественный прогресс в IMAGENET Calange. Это соревнование по распознаванию картинок нейронными сетями. Создана очень большая база изображений (датасет). В этот датасет входят разные изображения по 200 категориям. В категории TOP-1 accuracy нейронная сеть должна с одной попытки угадать категорию, например, это самолёт или туфли. В категории TOP-5 accuracy нейронная сеть должна с пятью попыток угадать категорию. Как мы увидим, прогресс постепенно выходит на плато:
год TOP-1 TOP-5 2013 65% 85% 2014 74% 87% 2015 79% 92% 2016 83% 95% 2017 84% 97% 2018 85% 97.5% 2019 86% 97.6% 2020 86% 97.7% 2021 86.5% 97.9%
Давайте посмотрим другие показатели. Так до 2017 года дополнительные данные не давали преимущества, а лишь ухудшали результат. В 2017 году результаты сравнялись, а после с дополнительными данными результаты линейно обгоняют простого обучения на датасете. Сейчас TOP-1 = 90.2%, TOP-5 = 98.8. Возможно, именно в них и будет прогресс.
Также скорость обучения выросла: 2018 6.210 минуты, 2019 1.39 минуты, 2020 47 секунд до 1 минуты. Время всё же снижается кратно, хоть и по убывающей, а ресурсы увеличиваются экспоненциально, но и сложность нейронных сетей возрастает, чтобы показывать результаты более высокие. Но, хоть и ресурсов требуется гораздо больше, но в реальности нас интересует стоимость, а она постоянно снижается: 2018 500$, 2019 10$, 2020 8$, хоть и затухающе.
Может быть ситуация связан с утиханием интереса среди учёных к искусственному интеллекту? Но, нет, доля публикаций в AI со времени прорыва в распознавании изображений относительно всех публикаций экспоненциально растёт:
год % 2011 1.4 2012 1.2 2013 1.2 2014 1.3 2015 1.5 2016 1.8 2017 2.0 2018 2.5 2019 3.8
Общее число публикаций тоже растёт, причём экспоненциально:
2011 0.1 тысяч 2012 0.2 тысяч 2013 0.3 тысяч 2014 0.5 тысяч 2015 1.1 тысяч 2016 1.9 тысяч 2017 3.0 тысяч 2018 3.5 тысяч 2019 5.8 тысяч 2020 6.5 тысяч
Рассмотрим США, так как она занимает лидирующее место по публикациям (36,3%) в AI от других стран в совокупи, что не удивительно, ведь доля PHD полученных в США от всех стран в совокупи в AI составляет 81,8%. PHD по компьютерным наукам специализация на ML/AI лидирует с долей 25% от всех направлений по компьютерным наукам, отрываясь от Теории алгоритмов с долей 8%. При этом скорость роста популярности за год у ML/AI самая высокая: 9%. А подробнее про рост с 2019 по 2020 (остальные показывают снижение популярности):
Artificial Intelligence/Machine Learning 9% Robotics/Vision 2.6% Human-Computer Interaction 2% Security/Information Assurance 2% Computing Education 1.4% Databases/Information Retrieval < 1% High Performance Computing < 1% Theory and Algorithms < 1% Information Science < 1% Social Computing/Social Informatics/CSCW < 1%
При этом с каждым годом, получившие степень PhD (Doctor of Philosophy) в США, всё больше находят работу в частных компаниях, что подтверждает, что компании оценивают потенциал AI, который они смогут применить.:
год % 2010 44 2011 41 2012 50 2013 50 2014 58 2015 58 2016 60 2017 58 2018 61 2019 65
При этом важно заметить, что растут публикации не только издаваемые государственными учреждениями, такими как институтами и государством при написании докторских работ, но и корпоративные, то есть те, которые предполагается использовать в реальном бизнесе и тенденция показывает экспоненциальный рост:
год Китай США 2010 0,2 тысяч 0,7 тысяч 2011 0,2 тысяч 0,7 тысяч 2012 0,2 тысяч 0,8 тысяч 2013 0,3 тысяч 0,9 тысяч 2014 0,3 тысяч 1,0 тысяч 2015 0,4 тысяч 1,3 тысяч 2016 0,5 тысяч 1,5 тысяч 2017 0,7 тысяч 2,0 тысяч 2018 1,1 тысяч 2,7 тысяч 2019 1,6 тысяч 3,6 тысяч
Раз есть публикации, значит есть и исследования, а наиболее полезные обычно (зависит от страны) патентуют. При этом рост экспоненциальный числа патентов в IA и доля IA патентов постепенно растёт от общего числа патентов:
год тысяч патентов 2009 39 2010 42 2011 49 2012 56 2013 60 2014 60 2015 60 2016 57 2017 61 2018 78 2019 102
Ориентируясь на сегментацию AI публикаций на сайте arXiv можно косвенно провести с общей ситуацией по росту направлений в AI. В приведённой ниже статистике они все показывают рост и при том линейный. Наибольший рост показали Computer Vision (31% от общего) и нейронные сети (32% от общего):
область AI публикаций Нейронный Machine Learning 11.098 Computer Vision 11.001 Языки 5.573 Robotics 2.571 Общий AI 1.923 Статистический ML 1.818
Также косвенно можно посмотреть по распределению конференций:
International Conference on Intelligent Robots and Systems (IROS) 25,719 Conference and Workshop on Neural Information Processing Systems (NIPS) 22,011 International Conference on Machine Learning (ICML) 10,800 The Conference on Computer Vision and Pattern Recognition (CVPR) 7,500 Association for the Advancement of Artificial Intelligence (AAAI) 4,884 International Joint Conference on Artificial Intelligence (IJCAI) 3,015