Alberto Canen - El Observador. La Solución Al Génesis стр 3.

Книгу можно купить на ЛитРес.
Всего за 124.78 руб. Купить полную версию
Шрифт
Фон

Por ejemplo: según las escrituras védicas [4], los cuatro yugás (eras) forman un ciclo de 4.320.000 años (un Majá-yugá, o ‘gran era’), que se repite una y otra vez. La primera es la Satyá-yugá o ‘era de la verdad’ de 1.728.000 años de duración. En la que el promedio de vida de una persona era de 100.000 años. Es la Era de Oro, según otra clasificación.

Luego, adviene la Duapára-yugá o ‘segunda era’ que abarca unos 1.296.000 años. Con un promedio de vida de 10.000 años; también denominada Era de Plata.

La ‘tercera era’, Treta-yugá duró unos 864.000 años; en ella el promedio de vida que tenía un hombre era de 1.000 años; también es conocida como Era de Bronce (aunque no se pretende que coincida con la Edad de Bronce en la India).

Finalmente, Kali-yugá o ‘era de riña’ de 432.000 años de extensión donde el promedio de vida de un ser humano era de 100 años (al comienzo de ella, hace 5100 años). Denominada Era de Hierro (tampoco se pretende que coincida con la Edad de Hierro en la India).

Interesante, muy interesante.

Hasta aquí no encontré inconvenientes en sopesar los “siete días”.

Si uno cree en Dios, lo normal, a mi entender, sería creer que es infinito, por lo que la relación miles o millones de años-días de Dios no me ha generado ningún conflicto.

Sigamos.

Analicemos ahora la explicación que nos brinda la ciencia acerca del nacimiento del Sistema Solar y de nuestro planeta Tierra para, de esta manera, luego poder compararla con el texto del Génesis.

Los invito a situarnos en el lugar y en el tiempo.

Vayamos hasta ese momento en el que todo se inició en nuestro pequeño rincón del universo.

Hace seis mil millones de años, una nube de gas y polvo estelar -lo que se denomina una nebulosa planetaria-, flota a la deriva en el espacio.

Esta nebulosa, esta nube de polvo y gas estelar es el producto residual de una estrella, que luego de su muerte como supernova [5] (estrella que explota en su muerte, su estadío final) esparce en el espacio los materiales que ha producido en su interior a partir de elementos más simples.

Los elementos creados en ese horno estelar -ahora más complejos- componen esta enorme nube de polvo, hielo y gas que flota plácidamente a la deriva. Nuestra nebulosa local.

El fenómeno de la explosión de una supernova es similar al de la explosión de una Nova, pero con la diferencia sustancial que, en el primer caso, las energías en juego son un millón de veces superiores. Cuando se produce un acontecimiento catastrófico de este tipo, los astrónomos ven encenderse de improviso en el cielo una estrella que puede alcanzar magnitudes aparentes de -6m o más.

La explosión de una supernova es un fenómeno relativamente raro. De todos modos tenemos testimonios de hechos de este tipo: en 1054, se encendió una estrella en la constelación de Tauro, cuyos restos aún pueden observarse bajo la forma de la espléndida Crab Nebula; en 1572, el gran astrónomo Tycho de Brahe observó una supernova brillando en la constelación de Casiopea; en 1640, un fenómeno análogo fue contemplado por Kepler. Todas éstas son apariciones de supernovas que estallaron en nuestra Galaxia.

Hoy se calcula que cada galaxia produce, en promedio, una supernova cada seis siglos. Una famosa supernova de una galaxia exterior es la aparecida en 1885 en Andrómeda.

En determinado momento, esta calma, este flotar plácido, se ve alterado por la llegada de olas, olas-ondas de choque producidas posiblemente por la explosión de otra supernova, otra estrella que termina sus días en las cercanías.

Estas ondas de choque, estas olas que impactan y sacuden a nuestra apacible nebulosa desencadenan en ella su contracción, y al contraerse comienza a girar y a achatarse.

Este disco achatado que es ahora nuestra nebulosa planetaria, conduce la mayor parte de la materia hacia el centro donde ésta se acumula.

Este enorme cúmulo de materia (en su mayoría gas) hace que -bajo su propio peso y por efecto de la gravedad- colapse, iniciando así la combustión de la incipiente estrella central, el Sol.

La misma fuerza de gravedad -la misma fuerza gravitacional- que genera la acumulación de materia en el centro y como consecuencia la creación de una estrella, en nuestro caso el Sol, también produce remolinos y grumos en el disco de polvo, disco de polvo en el que se ha convertido la nebulosa original y que ahora gira lentamente alrededor del Sol.

Estos grumos que giran como remolinos sobre sí y que continúan su viaje en torno al centro, son los nodos que van a dar origen a los planetas.

Estos planetas primigenios, estos nodos o remolinos de materia estelar, continúan su camino en torno al Sol, pero no con un movimiento circular, sino en forma de espiral, cayendo hacia él, acercándose un poco más en cada vuelta, en cada órbita. Por lo que se deduce que cuando iniciaron sus giros, los remolinos originales, se encontraban más lejos de lo que los planetas “terminados” se encuentran actualmente.

¿Y cuál fue la consecuencia de ese acercamiento al Sol por ese camino en espiral? Bien, lo que ocurrió fue que esos planetas bebés -podríamos decir-, fueron “limpiando” de escombros, polvo, y gas, el espacio por donde pasaron y, de esa forma, acrecentaron sus masas con la materia capturada.

Entonces, recapitulemos y observemos el panorama general.

Primero: surge una nube de polvo y gas caótica que flota en el abismo interestelar, fruto de la explosión previa de alguna supernova que desperdiga por el espacio su materia.

Segundo: se genera un disco de acreción a partir de esa materia que va a dar origen, primero al Sol y luego a los planetas.

Tercero: ese disco es en sí mismo una nube de polvo y gas, que los planetas al orbitar irán limpiando del espacio circundante.

Al “barrer” ese material, al atraerlo hacia sí, los planetas incrementarán su tamaño con el polvo y el gas capturado.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3

Популярные книги автора