В. Бессонов - Радиоэлектроника для начинающих (и не только) стр 25.

Шрифт
Фон

Радиоэлектроника для начинающих (и не только)

Рис. 3.8, а) действующее значение синусоидального тока;

I = Im/√2 = Im/1,414 = 0,707∙Im (3.2, a)

Аналогично для напряжения и э.д.с.:

U = 0,707∙Um (3.2, б)

Е = 0,707∙Еm. (3.2, в)

Поэтому, когда мы говорим, что лампа накаливания рассчитана на 220 В, мы подразумеваем, что это действующее напряжение.

Аналогично, если мы лампочку от карманного фонаря, рассчитанную на напряжение 3,5 В, подключим к источнику переменного тока с напряжением 3,5 В, то накал нити лампочки будет таким же, как и при питании ее от батареи с напряжением на зажимах 3,5 В.

Из (3.2) видно: зная действующее значение силы тока I (напряжения U, э.д.с. Е), которую можно измерить амперметром переменного тока, можно вычислить его амплитудное значение:

Im = I∙√2= 1,4141 (3.3, a)

Um = 1,414∙U (3.3, б)

Em = 1,414∙E (3.3, в)

Из формулы видно, что амплитудное значение синусоидального тока (напряжения, э.д.с.) почти в полтора раза (в 1,414 раза) больше его действующего значения. Так, амплитудное значение напряжения сети 220 В равно:

Um= U∙1,414 = 220∙1,414 = 311 В.

Все амперметры, вольтметры переменного тока калибруются на синусоидальном токе (напряжении); для переменного тока другой формы показания этих приборов нужно корректировать. Например, для переменного тока треугольной формы (рис. 3.8, б) соотношение между действующим и амплитудным значениями определяется по формулам:

В. Бессонов - Радиоэлектроника для начинающих (и не только)

Рис. 3.8, б) соотношение между действующим и амплитудным значениями для переменного тока треугольной формы;

I = Im/√3 = 0,577∙Im (3.4, a)

Im = 1,732∙I (3.4, б)

Для последовательности прямоугольных импульсов (рис. 3.8, в), называемых еще "меандром":

I = Im (3.5)

В. Бессонов - Радиоэлектроника для начинающих (и не только)

Рис. 3.8, в) соотношение между амплитудным и действующим значениями тока для последовательности прямоугольных импульсов;

а для последовательности коротких прямоугольных импульсов (рис. 3.8, г):

I = Im∙√α (3.6)

где α = τ/T, (τ - длительность импульса).

В. Бессонов - Радиоэлектроника для начинающих (и не только)

Рис. 3.8, г) Соотношение между амплитудным и действующим значениями для последовательности коротких прямоугольных импульсов

3.2. ЭЛЕКТРИЧЕСКАЯ ЦЕПЬ ПЕРЕМЕННОГО ТОКА. ЭЛЕМЕНТЫ ЦЕПИ

Элементами цепи переменного тока могут быть лампа накаливания, электрическая плитка, утюг, электродвигатель, резистор, конденсатор, катушка индуктивности, полупроводниковый диод, варистор и другие элементы. Лампа накаливания, электрическая плитка, утюг, резистор, диод, варистор представляют собой элементы, которые преобразуют электрическую энергию в тепловую. Говорят, что они обладают активным сопротивлением. А вот конденсатор и катушка индуктивности являются реактивными элементами, они не преобразуют электрическую энергию в тепловую, т. е. они не потребляют электрическую энергию, как, например, резистор, но обладают другими замечательными свойствами, которые будут рассмотрены ниже.

Кроме того, как указывалось в главе 2, элементы цепи делятся на линейные и нелинейные. Линейные элементы имеют линейную ВАХ (вольт-амперную характеристику) (рис. 3.9, а), нелинейные - нелинейную ВАХ (рис. 3.9, б). Из перечисленных выше элементов линейными элементами являются резистор, конденсатор и катушка индуктивности, а остальные элементы нелинейные.

Радиоэлектроника для начинающих (и не только)

Рис. 3.9. ВАХ линейного элемента (а) и нелинейного элемента (б)

Внешний вид конденсаторов, их УГО и БЦО показаны на рис. 3.10.

В. Бессонов - Радиоэлектроника для начинающих (и не только)

Рис. 3.10.Внешний вид конденсаторов, их УГО и БЦО

Конденсатор, как и катушка индуктивности, оказывают переменному току сопротивление.

Последовательное и параллельное соединение конденсаторов.

Последовательное соединение конденсаторов (рис. 3.11, а):

1/Со = 1/C1 + 1/С2, (3.7, а)

отсюда:

Со = С1С2/(С1 + С2) (3.7, б)

1/Со = 1/C1 + 1/С2 + 1/С3 (3.8)

Параллельное соединение конденсаторов (рис. 3.11, б):

С0 = С1 + С2, (3.9)

С0 = С1 + С2 + С3. (3.10)

В. Бессонов - Радиоэлектроника для начинающих (и не только)

Ряс. 3.11. Последовательное (а) и параллельное (б) соединение конденсаторов

Обратите внимание: общая емкость при последовательном соединении конденсаторов вычисляется по формуле, аналогичной формуле для вычисления общего сопротивления при параллельном соединении резисторов, а общая емкость при параллельном соединении конденсаторов - по формуле, аналогичной формуле для вычисления общего сопротивления при последовательном соединении резисторов.

Для получения необходимой емкости при последовательном соединении конденсаторов требуются некоторые вычисления. Для облегчения подбора ёмкости второго конденсатора (при известном значении емкости первого) на рис. 2.22 (глава 2) приведена номограмма.

Как пользоваться номограммой? При определении общих параметров деталей, номиналы которых имеют один порядок, пользуются шкалами ОА, ОВ, ОС, а если номиналы различаются на один порядок, то шкалами ОА, OD, ОЕ. Поясним это на примерах.

Пример 1. Последовательно соединены конденсаторы емкостью 5 и 20 мкФ. Чему равна общая емкость? Приложив линейку к делению 5 на шкале ОА и к делению 20 на шкале OD, на шкале ОЕ прочтем результат - 4 мкФ.

Пример 2. Какой емкости конденсатор необходимо включить последовательно с конденсатором емкостью 5,6 пФ, чтобы их общая емкость была 2,5 пФ? Прикладывая линейку к делениям 5,6 на шкале ОА и 2,5 на шкале ОС, на шкале ОВ прочтем - 4,5 пФ.

Чтобы лучше понять принцип работы конденсатора и катушки индуктивности как реактивных элементов, рекомендуем вам самостоятельно провести ряд простых экспериментов.

3.2.1. Конденсатор как накопитель электрической энергии

Для этого соберите схему (рис. 3.12, а). В положении переключателя SA, указанного на рисунке, конденсатор С будет заряжаться от батареи. Ток заряда протекает по цепи: "+" батареи GB резистор R -> переключатель SA -> конденсатор С -> "-" батареи GB. Через несколько секунд конденсатор зарядится и можно переключатель SA поставить в правое положение, лампочка кратковременно вспыхнет и погаснет. Чтобы лучше уяснить процесс заряда и разряда конденсатора, воспользуемся аналогией. Представим конденсатор в виде сосуда с крышкой, который может вместить определенное количество жидкости, например бензина.

После заполнения этого сосуда бензин можно вылить и поджечь, - это эквивалентно вспышке лампочки.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке