
Фиг. 2.3. Двойное рассеяние в близкие конечные состояния.
Частица а, рассеявшись, оказалась в состоянии 1. Под состоянием мы подразумеваем данное направление и энергию или какие-нибудь другие заданные условия. Частица b рассеялась в состояние 2.Предположим, что состояния 1 и 2 почти одинаковы. (На самом же деле мы хотели бы получить амплитуду того, что две частицы рассеялись в одном и том же направлении или в одно и то же состояние, но лучше будет; если мы сперва подумаем над тем, что произойдет, если состояния будут почти одинаковыми, а затем выведем отсюда, что бывает при их полном совпадении.)
Пусть у нас была бы только частица а; тогда у нее была бы определенная амплитуда рассеяния в направлении 1, скажем <1|а>. А частица b сама по себе обладала бы амплитудой <2|b> того, что приземление произойдет в направлении 2. Если частицы не тождественны, то амплитуда того, что в одно и то же время произойдут оба рассеяния, равна попросту произведению
<1|а><2|b>. Вероятность же такого события тогда равна
|<l|a><2|b>| что также равняется
|<1|а>||<2|b>|. Чтобы сократить запись, мы иногда будем полагать
<1|а>=а1, <2|b>=b2.
Тогда вероятность двойного рассеяния есть
|a1||b2|.
Могло бы также случиться, что частица b рассеялась в направлении 1, а частица а -в направлении 2. Амплитуда такого процесса была бы равна
<2|а><1|b>, а вероятность такого события равна
|<2|а><1|b>|=|a2||b1|.
Представим себе теперь, что имеется пара крошечных счетчиков, которые ловят рассеянные частицы. Вероятность Р2 того, что они засекут сразу обе частицы, равна просто
P2=|a1||b2|+|a2||b1|. (2.3)
Положим теперь, что направления 1 и 2 очень близки. Будем считать, что а с изменением направления меняется плавно, тогда а1и а2 при сближении направлений 1 и 2 должны приближаться друг к другу. При достаточном сближении амплитуды а1и а2 сравняются, и можно будет положить а1=а2 и обозначить каждую из них просто а; точно так же мы положим и b1=b2=b. Тогда получим
Р2=2|а||b|. (2.4)
Теперь, однако, предположим, что а и b - тождественные бозе-частицы. Тогда процесс перехода а в состояние 1, а b в состояние 2 нельзя будет отличить от обменного процесса, в котором b переходит в 2, а а - в 1. В этом случае амплитуды двух различных процессов могут интерферировать. Полная амплитуда того, что в каждом из счетчиков появится по частице, равна
<1| а><2|b>+<2|а><1|b>, (2.5)
и вероятность того, что ими будет зарегистрирована пара, дается квадратом модуля этой амплитуды:
Р2= |а1b2+a2b1|=4|a||b|(2.6)
Б итоге выясняется, что вдвое более вероятно обнаружить две идентичные бозе-частицы, рассеянные в одно и то же состояние, по сравнению с расчетом, проводимым в предположении, что частицы различны.
Хотя мы считали, что частицы наблюдаются двумя разными счетчиками,- это несущественно. В этом можно убедиться следующим образом. Вообразим себе, что оба направления 1 и 2 привели бы частицы в один и тот же маленький счетчик, который находится на каком-то расстоянии. Мы определим направление 1, говоря, что оно смотрит в элемент поверхности dS1 счетчика. Направление же 2 смотрит в элемент поверхности dS2счетчика. (Считается, что счетчик представляет собой поверхность, поперечную к линии рассеяния.) Теперь уже нельзя говорить о вероятности того, что частица направится точно в каком-то направлении или в определенную точку пространства. Это невозможно - шанс зарегистрировать любое фиксированное направление равен нулю. Если уж нам хочется точности, то нужно так определить наши амплитуды, чтобы они давали вероятность попадания на единицу площади счетчика. Пусть у нас была бы только одна частица я; она бы имела определенную амплитуду рассеяния в направлении 1. Пусть<1|а>=a1 определяется как амплитуда того, что а рассеется в единицу площади счетчика, расположенного в направлении 1. Иными словами, мы выбираем масштаб а1и говорим, что она "нормирована" так, что вероятность того, что а рассеется в элемент площади dS1равна
![]()
Если вся площадь нашего счетчика DS и мы заставим dS1странствовать по этой площади, то полная вероятность того, что частица а рассеется в счетчик, будет
![]()
Как и прежде, мы хотим считать счетчик настолько малым, что амплитуда а1на его поверхности не очень меняется; значит, а1будет постоянным числом, и мы обозначим его через а. Тогда вероятность того, что частица а рассеялась куда-то в счетчик, равна
![]()
Таким же способом мы придем к выводу, что частица b (когда она одна) рассеивается в элемент площади dS2с вероятностью
![]()
(Мы говорим dS2, а не dS1в расчете на то, что позже частицам а и b будет разрешено двигаться в разных направлениях.) Опять положим b2 равным постоянной амплитуде b; тогда вероятность того, что частица b будет зарегистрирована счетчиком, равна
![]()
Когда же имеются две частицы, то вероятность рассеяния а в dS1и b в dS2будет
![]()
Если нам нужна вероятность того, что обе частицы (и а, и b) попали в счетчик, мы должны будем проинтегрировать dS1 и dS2по всей площади DS; получится
![]()
Заметим, кстати, что это равно просто ра·рbвточности так, как если бы мы предположили, что частицы а и b действуют независимо друг от друга.
Однако, когда две частицы тождественны, имеются две неразличимые возможности для каждой пары элементов поверхности dS1и dS2. Частица а, попадающая в dS2, и частица b, попадающая в dS1, неотличимы от а в dS1и от b в dS2, так что амплитуды этих процессов будут интерферировать. (Когда у нас были две различные частицы, то, хотя мы на самом деле не заботились о том, какая из них куда попадает в счетчике, мы все же в принципе могли это узнать; так что интерференции не было. А для тождественных частиц мы и в принципе не можем этого сделать.) Мы должны тогда написать, что вероятность того, что пара частиц очутится в dS1и dS2, есть