![]()
159. Из зерна крестьянина должно было получиться 1
мешка муки, что после уплаты
всей муки как раз и даст ровно один мешок.
160. Ответ задачи: полкурицы плюс полкурицы, то есть одна курица. Если полторы курицы несут полтора яйца за полтора дня, то одна курица несет по одному яйцу за полтора дня. Курица, которая несется лучше в полтора раза, несет полтора яйца за полтора дня, или по яйцу а день. Поэтому она снесет 10½ яиц (десяток яиц с половиной) за 10½ дня (полторы недели).
161. У Адама было 60 овец, у Бена 50, у Клода 40 и у Дана 30. После всех перераспределений у каждого оказалось по 45 овец.
162. Наименьшее возможное количество яиц равно 103, а женщина ежедневно продавала по 60 штук. Любые кратные этих чисел можно использовать в качестве ответа на вопрос задачи. Например, женщина могла привезти 206 яиц и продавать по 120 штук или привезти 309 яиц и продавать по 180. Поскольку требовалось найти наименьшее число, то ответ единствен.
163. Нужно просто разделить данное число на 8. Если оно разделится нацело, без остатка, то мышка - во второй бочке. Если остаток будет равен 1, 2, 3, 4 или 5, то номер бочки совпадет с этим остатком. Если остаток получится .больше 5, то его нужно вычесть из 10. Полученная разность равна номеру бочки. Число 500 при делении на 8 дает в остатке 4, так что на искомой бочке изображена цифра 4.
164. Пять бригад насчитывают соответственно по 5670, 6615, 3240, 2730 и 2772 человека. После приведения всех дробей к общему знаменателю (12 012) числители станут равны соответственно 4004, 3432, 7007, 8316 и 8190. Комбинируя все различные делители, содержащиеся в этих числах, мы получаем 7 567 560, что при делении на каждое из чисел даст соответственно 1890, 2205, 1080, 910 и 924. Поскольку в условии говорится, что соединение насчитывает "немногим более 20 тыс. человек", мы умножаем полученные числа на 3, что и дает правильную общую численность в 21 027 человек.
165. Всего голосовавших было 207. Сперва 115 избирателей проголосовало "за" и 92 "против", причем большинство составило 23 голоса, что как раз и равно одной четверти от 92. Но когда 12 человек, для которых не нашлось стульев, присоединились к оппозиции, оказалось, что "за" подано 103, а "против" - 104 голоса. Так что победили противники забастовки большинством в один голос.
166. Артур может выполнить всю работу за 14
) Бенджамин - за 17
и Чарлз - за 23
дня.
167. Сумма номеров тех домов, которые расположены по одну сторону от данного, совпадет с суммой номеров по другую сторону от него в следующих случаях: 1) если номер данного дома равен 1 и других домов вообще нет; 2) если номер равен 6 и всего имеется 8 домов; 3) если номер равен 35, а всего домов 49; 4) если номер дома 204, а всего домов 288; 5) если номер дома 1189, а всего домов 1681 и т. д. Однако нам известно, что число домов больше 50 и меньше 500; следовательно, искомый номер равен 204.
Решив уравнение (x + x)/2 = y в целых числах, получим ответы:
| Число | Номер |
| домов x | дома y |
| 1 | 1 |
| 8 | 6 |
| 49 | 35 |
| 288 | 204 |
| 1681 | 1189 |
и т. д.
168. Номер дома Брауна 84, а всего на улице 119 домов. Сумма чисел от 1 до 84 равна 3570, а сумма чисел от 1 до 119 составит 7140, что, как и требовалось, ровно в 2 раза больше.
Выпишем последовательные решения (в целых числах) уравнения 2x - 1 = y:
| x | y |
| 1 | 1 |
| 5 | 7 |
| 29 | 41 |
| 169 | 239 |
| 985 | 1393 |
и т. д. Тогда целая частьx/2 даст нам номер дома, а целая часть y/2 - общее число домов. Так (опуская тривиальный случай 0-0), мы получаем 2-3, 14-20, 84-119, 492-696 и т.д.
169. На нечетной стороне улицы номер дома равен 239, а всего на ней расположено 169 домов. На четной стороне улицы номер дома равен 408, а всего на ней расположено 288 домов.
В первом случае мы ищем решение в целых числах уравнения 2x - 1 = y. Получаем следующие ответы:
| Число | Номер |
| домов x | дома y |
| 1 | 1 |
| 5 | 7 |
| 29 | 41 |
| 169 | 239 |
| 985 | 1393 |
и т. д.
Во втором случае мы ищем решение в целых числах уравнения 2(x + x) = y. Получаем следующее:
| Число | Номер |
| домов x | дома y |
| 1 | 2 |
| 8 | 12 |
| 49 | 70 |
| 288 | 408 |
| 1681 | 2378 |
и т. д.
Эти два случая, равно как и предыдущие две головоломки, похожи друг на друга и используют хорошо известное уравнение Пелля.
170. Ошибка Хильды состояла в том, что заданное число она умножила не на 409, а на 49. Разделив величину от полученной погрешности на разность этих чисел, получим требуемое число 912.
171. Семнадцать лошадей требовалось поделить в пропорциях: ½, ⅓,
. Это не означает, что сыновья должны получить такие доли от числа 17. Пропорции можно записать также в виде
,
и
. так что сыновья получат соответственно по 9, 6 и 2 лошади каждый и завещание будет строго соблюдено. Следовательно, нелепый старый метод, о котором упомянул Проджерс, случайно приводит к правильному решению.
Один читатель прислал мне следующее хитроумное решение:

172. Перечислим шесть прямоугольных треугольников, имеющих одинаковый, наименьший из возможных (720), периметр: 180, 240, 300; 120, 288, 312; 144, 270, 306; 72, 320, 328; 45, 336, 339; 80, 315, 325.
173. Запишем следующую последовательность чисел, впервые исследованную Леонардо Фибоначчи (родился в 1175 г.), который практически ввел в европейский обиход привычные нам арабские цифры:
![]()
Каждое последующее число равно сумме двух предыдущих. Сумма всех чисел, от первого до данного на 1 меньше числа, идущего через один после данного. Если удвоить любой член последовательности и прибавить к нему предыдущий, то получится член, который следует через один после данного. Далее, в первый год приплод будет составлять 0 телок, во второй 1, на третий 1, на четвертый 2 и т. д. При этом как раз и получатся члены данной последовательности. Двадцать пятый член равен 46 386, и если мы сложим все 25 членов, то получим правильный ответ 121 392. Но на самом деле нет необходимости выполнять это сложение. Найдя, двадцать четвертый и двадцать пятый члены, мы просто скажем, что 46 368, умноженное на 2, плюс 28 657 равно 121 393, и вычтем затем 1.
174. Взяв любое число, а потом другое, равное 1 плюс дробь, у которой в числителе стоит 1, а в знаменателе число, на 1 меньшее данного, мы получим пару чисел, дающих в сумме и в произведении одно и то же. Вот несколько примеров: 3 и 1½, 4 и 1⅓, 5 и 1¼ и т. д. Следовательно, получив 987 654 321, я немедленно написал 1
. Сумма и произведение равны в этом случае 987654322
.
Пару 2 и 2 рассматривают как исключение потому, что знаменатель в этом случае равен 1, а второе число тоже оказывается целым 1
= 2. Но можно заметить, что и этот случай подчиняется общему правилу. Число может оказаться как целым, так и дробным, а в условии не говорится, что мы должны найти обязательно целое число, поскольку тогда единственным решением действительно был бы случай 2 и 2. Разумеется, допускаются и десятичные дроби, как, например, 6 и 1,2; 11 и 1,1; 26 и 1,04.
Итак, соответствующее число, парное к n, имеет вид