
Два пика около 10 и -10 суть зеркальные изображения друг друга.
Известны различные способы численного выполнения разложения Фурье, включая применение интегрирующих приборов и цифровые вычислительные процессы. В обоих случаях неудобством является то, что главные пики расположены около 10 и -10, а не около 0. Но существуют способы переноса гармонического анализа в окрестность нулевой частоты, которые весьма сокращают объем работы. Заметим, что
(10.05)
Другими словами, если умножить С(t) на е, то новый гармонический анализ даст нам полосу вблизи нулевой частоты и другую полосу вблизи частоты +20. Таким образом, если произвести такое умножение и исключить полосу вблизи +20 методами усреднения, равносильными применению волнового фильтра, то мы сведем наш гармонический анализ к гармоническому анализу в окрестности нулевой частоты. [c.275]
Но
(10.06)
Следовательно, действительная и мнимая части функции С(t)е равны соответственно
С(t) cos 20πt и iС(t) sin 20πt.
Частоты в окрестности +20 можно исключить, пропустив эти две функции через фильтр нижних частот, что равносильно усреднению по интервалу в одну двадцатую секунды или более.
Пусть мы анализируем кривую, у которой бо́льшая часть мощности сосредоточена вблизи частоты 10 гц. Умножив эту кривую на косинус или синус от 20πt, получим кривую, являющуюся суммой двух составляющих: одна из них ведет себя локально примерно так:

а другая - примерно так:

Усреднив вторую кривую по интервалу в 0,1 сек, получим нуль. Усреднив первую кривую, получим половину максимальной высоты. Таким образом, сглаживая С(t) cos 20πt и iС(t) sin 20πt, мы получим хорошие приближения соответственно к действительной и мнимой части некоторой функции, имеющей все свои частоты в окрестности нуля, и эта функция будет обладать таким же распределением частоты вокруг нуля, какое одна часть спектра кривой C(t) имела вокруг 10.
Обозначим теперь через K1(t) результат сглаживания произведения С(t) cos 20πt, а через K2(t) - результат сглаживания произведения С(t) sin 20πt. Мы хотим найти [c.276]
(10.07)
Выражение (10.07) должно быть действительным, так как это спектр. Следовательно, оно будет равно
(10.08)
Другими словами, если найти косинус-преобразование от K1 и синус-преобразование от K2 и сложить их друг с другом, то мы получим смещенный спектр функции f. Можно показать, что K1 будет четной, a K2 - нечетной функцией. Стало быть, если определить косинус-преобразование от K1 и прибавить или вычесть синус-преобразование от K2, мы получим спектр соответственно справа и слева от центральной частоты на расстоянии ω. Этот метод получения спектра мы будет называть методом гетеродинирования.
Коль скоро автокорреляционные кривые локально представляют собой почти синусоиду с периодом, скажем, 0,1 сек (как в случае автокорреляции мозговых волн на рис. 9), то вычисления, связанные с методом гетеродинирования, можно упростить. Мы берем нашу автокорреляцию через интервалы в 1/40 сек. Затем берем последовательность значений при 0, 1/20, 2/20, 3/20 сек и т. д. и меняем знак на дробях с нечетным числителем. Усредняя по очереди эти значения по достаточно длинному отрезку, получим величину, приблизительно равную K1(t). Взяв аналогично значения автокорреляции при 1/40, 3/40, 5/50 сек и т. д. с чередующимися знаками и проведя такое же усреднение, получим приближенную величину K2(t). Дальнейшая процедура очевидна.
Оправдание этой процедуры следующее. Распределение массы, равное
1 в точках 2πn,
-1 в точках (2n+1)π и
0 во всех остальных точках,
если его подвергнуть гармоническому анализу, будет [c.277] содержать косинусоидальную составляющую с частотой 1 и не будет иметь синусоидальной составляющей. Точно так же распределение массы, равное
1 при (2n+1/2)π,
-1 при (2n-1/2)π и
0 во всех остальных точках,
будет содержать синусоидальную составляющую с частотой 1 и не будет иметь косинусоидальной составляющей. Оба распределения будут содержать также составляющие с частотами N; но поскольку исходная наша кривая не содержит или почти не содержит таких частот, эти члены будут незаметны. Это значительно упрощает наше гетеродинирование, так как нам нужно умножать лишь на множители +1 или -1.
Мы нашли метод гетеродинирования очень полезным при гармоническом анализе мозговых волн, когда в распоряжении имеются лишь ручные средства и когда объем работы становится подавляющим, если выполнять все шаги гармонического анализа без помощи гетеродинирования. Все наши первые исследования по гармоническому анализу спектров мозга выполнены методом гетеродинирования. Но поскольку со временем появилась возможность применять цифровую вычислительную машину, для которой объем работы не столь существен, многие из последующих анализов были проведены прямыми методами, без гетеродинирования. Однако еще немало работы придется делать в местах, где нет цифровых вычислительных машин, и я не считаю метод гетеродинирования устаревшим в практическом отношении.
Я привожу здесь куски одной автокорреляционной кривой, полученной при наших исследованиях. Ввиду того, что она охватывает большую серию данных, воспроизвести ее полностью затруднительно, и мы даем только се начало, в окрестности τ =0 и один из дальнейших кусков.
Рис. 11 изображает результат гармонического анализа автокорреляционной кривой, часть которой показана на рис. 9. В данном случае результат был получен на быстродействующей цифровой вычислительной машине, [c.278] но мы обнаружили хорошее согласие между этим спектром и вычисленным ранее вручную методами гетеродинирования, по крайней мере вблизи сильной части спектра.