Ангелина Яковлева - Статистика. Ответы на экзаменационные билеты стр 4.

Книгу можно купить на ЛитРес.
Всего за 94.9 руб. Купить полную версию
Шрифт
Фон

8. Средняя гармоническая, геометрическая, квадратическая, степенная

При решении задач расчет средней величины начинается с составления исходного отношения – логической словесной формулы средней. Она составляется на основе теоретического и логического анализа. Иногда среднюю арифметическую нельзя использовать. В этом случае в зависимости от ситуации применяется одна из трех форм средней.

Средняя гармоническая простая строится по формуле:

Статистика. Ответы на экзаменационные билеты

где n - число единиц совокупности или число вариантов;

х - значения варьирующегося признака.

Средняя гармоническая простая используется для несгруппированных данных.

Средняя гармоническая взвешенная строится по формуле:

Статистика. Ответы на экзаменационные билеты

где х - значения варьирующего признака;

m - веса;

n - число единиц совокупности. Среднюю гармоническую взвешенную используют для сгруппированных данных, т. е. когда каждое значение х повторяется различное число раз.

Средняя квадратическая простая строится по формуле:

Статистика. Ответы на экзаменационные билеты

где n - число единиц совокупности или число вариантов; х - значения варьирующегося признака.

Средняя квадратическая простая используется для несгруппированных данных.

Средняя квадратическая взвешенная строится по формуле:

Статистика. Ответы на экзаменационные билеты

где m – веса;

х – значения варьирующего признака.

Среднюю квадратическую взвешенную используют для сгруппированных данных.

Данные формулы используются редко, в специальных расчетах.

Средняя геометрическая простая строится по формуле:

Статистика. Ответы на экзаменационные билеты

где n – число единиц совокупности или число вариантов;

х – значения варьирующегося признака. Средняя геометрическая простая используется для несгруппированных данных.

Средняя геометрическая взвешенная строится по формуле:

Статистика. Ответы на экзаменационные билеты

где х – значения варьирующего признака;

m – веса;

n – число единиц совокупности или число вариантов. Различные формулы средних величин можно объединить в одной формуле – формуле степенной средней:

Статистика. Ответы на экзаменационные билеты

где р – порядок средней.

9. Медиана и мода. Асимметрия распределения

Медианой М е называется варианта, которая делит ранжированный вариационный ряд на две равные части, из которых значение одной половины меньше медианы, а значения другой – больше медианы.

Медиана для несгруппированных данных при нечетном числе вариантов ( n = 2k+ 1 ), определяется как M e = x k + 1, а при четном числе вариантов (n = 2k ), медиана определяется по формуле:

Статистика. Ответы на экзаменационные билеты

Медиана для сгруппированных данных рассчитывается по формуле:

Статистика. Ответы на экзаменационные билеты

где х 0 – это нижняя граница медианного интервала;

/– величина медианного интервала;

em / 2 – полусумма всех частот;

S Me – накопленная частота, предшествующая медианному интервалу;

m Ме – частота медианного интервала.

Медиана рассчитывают наряду со средней величиной или вместо нее, когда в ряду данных присутствуют открытые или неравные интервалы. Это не влияет на точность медианы, однако, влияет на точность величины.

Модой М 0 называется варианта, которая имеет наибольшую частоту по сравнению с другими частотами. В дискретно-вариационном ряду мода – это та варианта, которой соответствует наибольшая частота.

В интервальном вариационном ряду с равными интервалами моду определяют по формуле:

Статистика. Ответы на экзаменационные билеты

где х 0 – это нижняя граница модального интервала;

h – величина модального интервала;

d 1 – разность между частотами модального и предмодального интервалов;

d 2 – разность между частотами модального и послемодального интервалов.

Мода рассчитывается в тех случаях, когда невозможно или нецелесообразно рассчитывать среднюю величину по обычным формулам.

Асимметрией распределения называется несоразмерность, т. е. нарушение соответствия в расположении частей одного целого относительно средней линии или центра. На графике асимметрия распределения определяется как вытянутость одной из ветвей распределения. Асимметрия распределения возникает в связи с различной частотой появления вариант больших или меньших моды (т. к. мода соответствует вершине распределения) под влиянием преобладающего действия определенных факторов. Таким образом, наличие асимметрии говорит о неустойчивости распределения совокупности в связи с преобладающим воздействием какой-либо группы факторов.

Асимметрия распределения легко обнаруживается и измеряется на основе разницы между средней величиной и модой. В умеренно асимметричных распределениях мода и средняя образуют интервал, в пределах которого находится медиана. Если разделить этот интервал на 3, то медиана отстоит от моды на 2/3, а от средней – на 1/3.

Для измерения асимметрии рядов распределения применяется эмпирический коэффициент асимметрии:

Статистика. Ответы на экзаменационные билеты

где x- – простая средняя;

М о– мода;

G – среднеквадратическое отклонение.

10. Абсолютные показатели вариации

К абсолютным показателям вариации относятся:

1) вариационный размах ( R );

2) среднее абсолютное (линейное) отклонение (в);

3) дисперсия ( G 2 );

4) среднеквадратическое отклонение ( G ).

Вариационный размах R - это разность между

наибольшей и наименьшей вариантами вариационного ряда:

R = хmaxхmin

Вариационный размах является наиболее простой характеристикой рассеяния вариационного ряда. Недостатки данного показателя:

1) неточно характеризует колеблемость, потому что зависит только от двух значений признака;

2) зависит от объема совокупности, т. е. с увеличением объема совокупности увеличивается вероятность размера вариационного размаха.

Среднее абсолютное отклонение в - это вели чина, которая рассчитывается как среднее арифметическое абсолютных отклонений в данной совокупности.

Различают простое и взвешенное среднее абсолютное отклонение.

Среднее абсолютное простое отклонение рассчитывается по формуле:

Статистика. Ответы на экзаменационные билеты

где – n– объем совокупности;

x – выборочное среднее.

Среднее абсолютное взвешенное отклонение рассчитывается по формуле:

Статистика. Ответы на экзаменационные билеты

где x – выборочное среднее;

m – веса.

Недостатки данного показателя:

1) оторванность от других показателей. Это объясняется тем, что при построении показателя используется искусственный подход, т. е. отклонение берется по модулю (положительное);

2) недостаточная реакция на слабые различия в степени вариации.

Дисперсия – это среднее арифметическое квадратов отклонения наблюдаемых значений признака от – их среднего значения x.

Если значения признака, полученные в результате выборочного наблюдения, не группировать и не представлять в виде вариационного ряда, то для вычисления дисперсии используют формулу:

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3