Задумавшийся Андрей "andront" - Физика для чайников стр 6.

Шрифт
Фон

Ну, в общем-то, на этом и приближается к концу вся динамика. Остаётся кусочек, который снова заносит в космос. А именно - космические скорости. Не знаю, почему их запихнули в динамику - наверное, потому, что космос - это тоже такая инерциальная система отсчёта, где космический корабль бороздит просторы Вселенной в гордом одиночестве, никто ему не мешает, и он никуда не поворачивает, не тормозит и так далее.

Так вот, первый "оплот", при котором такое возможно, - это если вывести корабль на орбиту Земли так, чтобы он стал спутником Земли - то бишь так, чтобы он не летел дальше, а приостановился где-то недалеко от планеты. В итоге сила притяжения Земли вместе с космической "атмосферой" (которой почти нет - значит, ничего не должно мешать движению) заставят его крутиться вокруг нашей планетки. Соответственно, чтобы какой-то предмет смог так летать вокруг, надо ему дать такую скорость, чтобы он преодолел земное притяжение ровно настолько, чтобы оно же остановило его ровнёхонько на орбите планеты. Чтобы понять, как её надо посчитать, достаточно представить, как будет выглядеть весь процесс: со страшной скоростью подопытное туловище стартует с поверхности, в полёте гравитация и воздух тщетно пытаются его затормозить, и, наконец, на орбите он должен остановиться. Ничего не напоминает? Правильно – это будет замедленное движение. Чтобы совсем не заморачиваться на тему подсчётов – равнозамедленное. Расстояние, на которое летит туловище, - радиус Земли. Ускорение, противостоящее нам – g. Расстояние, пройденное при торможении, будет равно (v^2)*t по кинематике. А нам отсюда нужна скорость. Итого в цифрах это будет корень квадратный из произведения g на радиус Земли. Поскольку и то, и другое - числа известные и постоянные, то и скорость будет для всех одинаковая. Если посчитать, то первая космическая скорость получится примерно 7.9 км/с. Вторая космическая скорость - летим ещё дальше, её хватит на то, чтобы вообще преодолеть притяжение Земли и улететь бороздить просторы Солнечной системы. Для Земли она составляет 11.2 км/с. Считается она уже из закона, которым наверняка уже прожужжали все уши, - из закона сохранения энергии. (О нём – ближе к концу механики, сейчас пока не грузимся.) Третья космическая скорость позволяет ухнуть ещё дальше - вылететь вообще за пределы Солнечной системы, то есть преодолеть притяжение Солнца. Она может меняться, потому что космический корабль должен будет уворачиваться от вертящихся планет и тому подобных других посторонних предметов, пролетающих мимо в космосе. В среднем она составляет где-то около 42 км/с, но вообще может быть от 16.6 до почти 73 км/с. Наконец, есть ещё четвёртая космическая скорость. Она нужна на тот случай, если фантазия разыграется до таких вселенских масштабов, что захочется вышибить наш предмет с Земли настолько сильно, чтобы он преодолел притяжение самой нашей галактики Млечный путь. Её подсчёты ведут уже в какие-то заумные дебри современной физики; говорят, что она непостоянна и зависит от положения тела в галактике. Известно только, что в районе Солнечной системы нужно разогнаться аж до 550 км/с, чтобы иметь хоть какую-то надежду на полный улёт в настолько открытый космос, что и представить трудно.

Вкратце и поумнее: космические скорости - это скорости, которые нужно сообщить телу для того, чтобы оно:

1) стало спутником Земли - это 7.9 км/с;

2) преодолело гравитационное притяжение Земли и улетело в пространство Солнечной системы - 11.2 км/с;

3) преодолело гравитационное притяжение Солнца и улетело за пределы Солнечной системы - от 16.6 до 73 км/с, средняя считается около 42 км/с;

4) преодолело гравитационное притяжение галактики "Млечный путь" и улетело чёрт-те куда - приблизительно 550 км/с в районе Солнечной системы.

Наконец, последняя часть из трёх основных составляющих, наименее мучительная. Статика. Которая отвечает на вопрос, при каких условиях тело будет в равновесии. Или в состоянии покоя. Увы и ах, но здесь нельзя использовать всё ту же материальную точку, которая спасала в кинематике и динамике. Потому что наше тело, выходя из равновесия, скорее всего, будет описывать дугу - то бишь вращаться. Грубо говоря, если теряешь равновесие и падаешь, то как бы вращаешься вокруг оси, находящейся прямо под ногами - до тех пор, пока земля не помешает. А материальная точка исключает всякое вращение - как она вокруг себя вращаться-то будет? Нет того, около чего вращаться. Поэтому здесь делают так: просто твёрдое тело каких-то размеров (неважно, каких), его деформациями при внешних воздействиях можно пренебречь. Чтобы не получилось, что оно при малейшем дуновении ветерка разваливается на несколько частей или сплющивается в лепёшку, тогда уже считать будет нечего - его обратно в твёрдое состояние руками не вернёшь.

Дальше опять следует куча предположений, которые проще всего себе представить так. Вот у нас есть детские качели, на которых садятся два человека - доска на подставке с двумя сидениями на краях. Подставка намертво закреплена - не отдерёшь, - а к ней прикреплена палка, которая может подниматься-опускаться, как рычаг - или, по-умному, это получается всё то же вращение. И на сиденьях сидят дети. Ради прикола прикинем, что они идеальные близнецы - полностью одинаковые по массе, силе и т.д. и т.п. Тогда, если всё это перевести в заумные физические понятия, получается так: подставка, она же точка опоры - это ось вращения. Вокруг неё вращается наш "рычаг". Дети - это твёрдые тела. Господа знатоки, внимание, вопрос: так при каких же условиях дети будут находиться в равновесии? За такую формулировку на экзамене по физике могут заколоть заживо. В равновесии должно находиться то, что может вращаться - то есть в данном случае это наша палка качелей, которая закреплена на подставке. Именно её придётся теребить.

Первое, что идёт прямо из динамики, - сумма сил, действующих на тело, должна быть равна нулю. И это действительно так, но это ещё не всё. Здесь есть ещё второе условие, посложнее. Если наших двух одинаковых детей посадить нормально - так, что они будут сидеть каждый на сиденье, - то они действительно будут в равновесии. А если один из них подсядет ближе - качели тут же наклонит в сторону его товарища. Силы-то остались те же! Но поменялись их моменты. Момент силы - это модуль (только значение, без вектора!) силы, умноженный на её плечо - то есть расстояние от оси вращения до линии, по которой действует сила. Притом это расстояние выбирается кратчайшее - а как подсказывает заумная геометрия, в таком случае нужно брать длину отрезка, перпендикулярного линии силы. По-русски (и более наглядно) это значит, что надо просто брать длину той части качели, которая идёт от точки опоры до человека. Она всегда будет одна и та же, хоть ты перевернись.

Маленькое замечание к моментам: поскольку крутить он может в две разные стороны - "вверх" и "вниз" (именно в кавычках, строго говоря - это "по часовой стрелке" и "против часовой стрелки"), - то договорились, что момент, крутящий против часовой стрелки, будет больше нуля, а по часовой - меньше. По-честноку, не знаю, как это лучше запомнить и не перепутать - если только не знать алгебру на уровне синусов-косинусов - там тоже углы на единичной окружности отсчитываются таким же образом: против часовой стрелки идёт увеличение (+), по - уменьшение (-).

Короче говоря, из всех этих страшных слов следует простая вещь: если у тела есть закреплённая ось вращения, и сумма моментов сил, действующих на это тело, равна нулю, то тело будет в равновесии. На этом правиле основана работа весов - если неизвестную массу измеряемого туловища уравновешивают вместе поставленные гирьки, то момент силы тяжести гирек будет равен моменту силы тяжести туловища - отсюда, поскольку плечи обеих сил равны (а если даже и не равны, то они были бы известны - но так считать было бы гораздо неудобнее), то известны сами силы. А дальше как в ручных весах - сила тяжести гирек равна силе тяжести туловища, откуда при известной массе гирек находим, что масса туловища будет такая же.

Вкратце и поумнее: статика - раздел механики, изучающий условия равновесия взаимодействующих тел (в самом общем случае). Используется модель твёрдого тела, поскольку при нарушении равновесия оно будет вращаться вокруг некой оси, а материальная точка исключает вращение. Твёрдое тело - модель тела, деформацией которого под действием внешних сил можно пренебречь. Ось вращения - воображаемая прямая, на которой находятся центры всех траекторий точек вращающегося относительно неё твёрдого тела. Плечо силы - расстояние от оси вращения до линии, вдоль которой действует эта сила. Момент силы - произведение модуля силы на её плечо. Единица измерения - ньютон, умноженный на метр. Момент, вращающий тело по часовой стрелке, считается отрицательным, а против часовой стрелки - положительным. Итого условий равновесия твёрдого тела два: тело находится в равновесии, если сумма сил, действующих на это тело, равна нулю, и если сумма моментов сил, действующих на тело относительно произвольно выбранной оси, тоже равна нулю. В том числе отсюда следует правило моментов: тело, имеющее закреплённую ось вращения, будет находиться в равновесии, если сумма моментов сил относительно этой оси будет равна нулю.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке