Вполне вероятно, что основательная "замусоренность" ДНК высших организмов как раз и является главной причиной многоэтапной передачи наследственной информации в клетках эукариот. В прокариотах матричная РНК образуется на молекулах ДНК без всяких сложностей и немедленно приступает к синтезу белка на рибосомах. А вот в ядерных клетках все совершенно иначе. Сначала они синтезируют неполноценную предшественницу матричной РНК, а потом подвергают ее решительному усекновению с помощью ферментативного аппарата. Ферменты режут молекулу РНК на короткие цепи, бо ´
льшая часть которых распадается, после чего "огрызок", избавленный от ненужных пустот, выходит из ядра в цитоплазму и берется за дело. Этот процесс называется "созреванием РНК".
При внимательном изучении мусорная свалка внегенной ДНК обернулась настоящим золотым дном. Чуть больше года назад в джанке нашли удивительные микроскопические фрагменты – снипсы (от англ. SNP, single-nucleotide polymorphism – "однонуклеотидный полиморфизм"). Чтобы разобраться в этом, нужно сначала вспомнить, что молекула ДНК (и ген как ее часть) построена из азотистых оснований четырех типов – аденина (A), тимина (T), цитозина (C) и гуанина (G).
Дальше предоставим слово Рафаилу Нудельману:
Представим себе кусочек цепочки с таким, например, чередованием нуклеотидов: AAGGTTA. Допустим, что по каким-то причинам эта же цепочка у другого человека приняла вид ATGGTTA, где на втором месте взамен нуклеотида A встал нуклеотид T. Вот такая одиночная (точечная) замена и называется "снипсом". В данном конкретном случае говорят, что у этого отрезка ДНК есть две "аллели" (то есть две разновидности): A и T. Практически все выявленные снипсы имеют только две аллели (это значит, что почти у всех людей на данном отрезке A может быть заменено только на T, но не на G или C). Но таких "точек замены" может быть много, поэтому, двигаясь вдоль молекул ДНК каждого человека, мы обнаружим некую специфичность, свойственную ему последовательность таких замен. В сумме они образуют его "снипсовый профиль".
Поскольку в человеческом геноме содержится как минимум около трех миллиардов нуклеотидов, а снипсовые замены составляют примерно один процент, не составит большого труда отыскать по крайней мере около 30 миллионов точечных локусов, где имеется некоторый вполне ощутимый разнобой. Другими словами, индивидуальный снипсовый профиль – вещь вполне реальная, поскольку число возможных сочетаний однонуклеотидных замен астрономически велико. Это напоминает дактилоскопию, но только на уровне тонких генетических расхождений, поскольку совершенно невозможно себе представить двух разных людей с абсолютно идентичным снипсовым профилем.
Если бы все дело ограничивалось впечатляющими, но бесполезными цифрами, снипсам не уделили бы должного внимания. Однако совсем недавно выяснилось, что эти неуловимые различия ассоциированы с генетической предрасположенностью людей к тем или иным болезням. Речь, разумеется, не о том, что снипсы могут выступать в роли неких болезнетворных генов. Они всего лишь маркеры, своего рода опознавательные метки некоторых патологических состояний, помогающие специалистам выявить болезнь, вызываемую совокупным действием нескольких генов.
На подозрении оказались сахарный диабет обоих типов, некоторые разновидности злокачественных новообразований, глаукома, различные аутоиммунные болезни, рассеянный склероз и т. д. Поскольку во всех этих случаях удалось выявить статистически значимую связь "снипсового профиля" человека с его предрасположенностью к той или иной болезни, на повестку дня встал вопрос о тестировании граждан на предмет вероятности подцепить какую-нибудь хворь.
Иными словами, речь идет о своего рода генной диагностике, что позволит в перспективе подбирать лечение индивидуально. Например, абсолютной реальностью станет прицельная фармакотерапия, когда лекарственные препараты будут назначать в зависимости от чувствительности к ним больного. Но ведь можно поступить куда более радикально: научиться ремонтировать дефектные гены или, по крайней мере, вычеркивать из генома те из них, которые отвечают за тяжелые наследственные недуги. Однако сначала нужно как следует разобраться с взаимовлиянием генотипа и среды обитания, вычислить удельный вес наследственно обусловленных качеств.
Классическая формула "ДНК – РНК – белок" сегодня выглядит довольно наивной. Реальная картина оказалась гораздо сложнее. Помните микро-РНК, которые вмешиваются в работу генов? Сначала их обнаружили у растений и некоторых примитивных животных вроде круглого червя C. elegans – крохи около миллиметра длиной. Микро-РНК (они и в самом деле очень невелики и состоят всего из 21–25 оснований) связываются с путешествующей в цитоплазме матричной РНК и блокируют ее работу. На матричной РНК, как мы помним, записана инструкция по производству белка, но если к ней прицепилась микро-РНК, белковый синтез тормозится. Налицо прямое воздействие на генетический аппарат клетки (ибо гены в первую очередь заняты регуляцией синтеза белка), о котором совсем недавно цитологии даже не подозревали!
Чуть более 10 лет назад микро-РНК обнаружили и у человека. На сегодняшний день в человеческом геноме найдено около 700 микро-РНК, и по оценкам ученых, скоро это число дойдет до 1000. Между тем у нас всего лишь около 20 тысяч генов, кодирующих белки. Если же допустить, что каждая микро-РНК может влиять на работу нескольких генов (установлено, что они могут связываться сразу с несколькими типами матричной РНК), то под контроль этих крошечных молекул попадает треть человеческого генома. Одним словом, перед нами система регуляции невообразимой сложности, поскольку микро-РНК влияют не только на матричную РНК, но и друг на друга.
Уже нащупываются терапевтические подходы, использующие микро-РНК. Например, блокируя miR122, можно регулировать синтез холестерина и лечить гепатит. Опыты на животных показали: уровень холестерина в крови снижается на 40 %. Онкологи тоже заинтересовались малыми РНК, поскольку выяснилось, что при некоторых лейкозах они синтезируются в повышенных количествах. Если же их заблокировать, то можно затормозить опухолевый рост. А при других формах рака наблюдается падение уровня микро-РНК, причем именно таких, которые подавляют активность онкогенов. Кроме того, введение некоторых микро-РНК повышает чувствительность опухолевой ткани к радиации и химиотерапевтическим препаратам. А совсем недавно было показано, что малые РНК определенного типа способны блокировать работу генов вируса иммунодефицита человека (ВИЧ). Вполне вероятно, что лет через восемь-десять появятся первые лекарственные препараты на основе микроРНК для лечения СПИДа и рака.
Гены, бактерии, вирусы

При слове "бактерия" у людей, далеких от биологии, возникают самые неприятные ассоциации. На памяти человечества – жуткие инфекционные напасти вроде опустошительной эпидемии "черной смерти", выкосившей в XIV столетии более 30 % населения Европы. Но это только средние цифры: в Норвегии умерли четыре пятых всего населения, а некоторые европейские страны совершенно обезлюдели. По мнению специалистов, это была вторая пандемия чумы. Первая случилась в Византии, в годы правления императора Юстиниана (VI век новой эры), и потому называется юстиниановой. Третья пандемия пришлась уже на вполне исторические времена. Она началась в Гонконге в 1894 году и растянулась почти на три десятилетия, захватив большие портовые города. Именно тогда был открыт возбудитель инфекции – палочка под названием Yersinia pestis.
Микробиология делала большие успехи, но и в новые времена вспышки инфекционных болезней всегда были непременными спутниками социальных потрясений. Достаточно вспомнить хотя бы азиатскую холеру, разразившуюся в Европе в середине XIX века, или тифы – брюшной и сыпной – на фронтах Первой мировой и Гражданской войны. И даже сегодня, когда большинство грозных инфекций вроде бы давным давно канули в небытие, мы продолжаем сталкиваться с сальмонеллами, вызывающими тяжелые пищевые отравления, или с вездесущими стафилококками, прозванными чумой XX века.