Мартин Гарднер - Математические головоломки и развлечения стр 11.

Шрифт
Фон

К сожалению, после Баббеджа не осталось никаких записей о том, что он называл "простыми" механическими деталями своей машины, поэтому об устройстве ее можно только догадываться. В его архиве сохранилась лишь запись о том, что он представляет себе такой автомат "в виде фигур двух детей, играющих друг с другом в крестики и нолики. Рядом с детьми стоят фигуры барашка и петуха. Выигравший ребенок хлопает от радости в ладоши, петух кукарекает, барашек начинает блеять, а проигравший ребенок горько плачет, заламывая в отчаянии руки". С меньшей фантазией была задумана машина для игры в крестики и нолики, демонстрировавшаяся в 1958 году на Португальской промышленной выставке в Лиссабоне: выиграв, она радостно хохотала, а проиграв (по-видимому, из-за включения специальной цепи "плохой игры"), ворчала.

Может показаться, что составление программы, позволяющей цифровой вычислительной машине играть в крестики и нолики, или конструирование для этой же цели специального вычислительного устройства - дело очень простое. И это, действительно, будет так, пока вы не захотите сконструировать робота-гроссмейстера, который выигрывал бы у неопытных игроков максимальное число игр. Трудность заключается в том, чтобы угадать, какой ход новичок сделает с наибольшей вероятностью. Разумеется, он не будет делать совсем случайных ходов, но насколько хитрым окажется новичок - неизвестно.

Чтобы вы могли получить представление о том, какие трудности здесь возникают, предположим, что новичок делает ход на клетку 8. Робот вполне мог бы ответить не слишком хорошим ходом, заняв клетку 3. При игре против знатока крестиков и ноликов такая ошибка могла бы оказаться роковой, но при игре с противником "средней квалификации" вряд ли следует ожидать, что он сразу же ответит ходом, обеспечивающим ему победу, и займет клетку 9. Четыре из шести оставшихся ходов ведут к проигрышу противника. В самом деле, у противника наверняка появится сильное искушение пойти на клетку 4 и подстроить этим ходом роботу сразу две ловушки.

К сожалению, планам противника не суждено сбыться: робот легко может избежать ловушек, ответив сначала ходом на клетку 9, а затем на клетку 5. Может оказаться, что на практике при такой довольно безрассудной игре машина будет одерживать победу чаще, чем при спокойной тактике, почти заведомо приводящей к ничьей.

Истинный мастер игры в крестики и нолики, будь то человек или робот, должен не только знать наиболее вероятные ответные ходы неопытного игрока (их нетрудно установить, собрав статистические данные об уже сыгранных партиях), но и уметь анализировать стиль игры своего партнера, чтобы определить, какие ошибки тот склонен совершать особенно часто. Следует учесть и то обстоятельство, что новичок от партии к партии совершенствует свое мастерство, но здесь "простая" игра в крестики и нолики заставляет нас погрузиться в дебри весьма нетривиальных проблем теории вероятностей и психологии.

Английское название игры в крестики и нолики - тик-так-тоу - пишется и произносится по-разному. Согласно "Оксфордскому слословарю стихов Матушки-гусыни" название тик-так-тоу происходит от старинной английской детской считалочки:

Tit, tat, toe,
My first go,
Three jolly butcher boys all in a row.
Stick one up, stick one down,
Stick one in the old man's crown.

Я знаю многих любителей крестиков и ноликов, которые ошибочно полагают, что самое главное - это научиться неизменно выигрывать, и считают, что они уже постигли все тайны этой игры.

Истинный же мастер игры в крестики и нолики должен уметь использовать малейшее преимущество, возникающее даже в тяжелых для него ситуациях. Следующие три примера помогут читателю уяснить сказанное. Первый ход во всех трех партиях делается на одну из клеток 2, 6, 8, и 4.

Если вы начинаете с хода X8, а противник отвечает вам ходом О2, то вторым ходом вам лучше всего пойти на четвертую клетку (Х4). Этот ход приводит к выигрышу в четырех из шести возможных ответных ходов противника. Помешать вам выиграть противник может лишь ходом О7 или О9. Если противник сначала пошел Х8, а вы ответным ходом заняли одну из нижних угловых клеток, например О9, то вы еще можете надеяться на победу: противнику достаточно совершить любой из ходов Х2, Х4 или Х7.

Если противник делает первый ход Х8, то ответный ход О5 может привести к интересному развитию партии: если противник вторым ходом занимает клетку 2 (Х2), то вы можете даже позволить ему выбрать за вас ту клетку, которую вы займете при следующем ходе. При любом вашем ходе выигрыш вам обеспечен!

Рассказывая о разновидности игры в крестики и нолики, любимой древними римлянами, в которой фишки разрешалось передвигать с клетки на клетку, мы упоминали о том, что игрок, заняв центр доски, всегда выиграет. Для тех читателей, кого это интересует, приводим примерный ход двух партий в древнеримские крестики и нолики.

Мартин Гарднер - Математические головоломки и развлечения

Обе партии гарантируют первому игроку выигрыш независимо от того, разрешается ли передвигать фишки по двум главным диагоналям или нет. Если фишки можно передвигать и по малым, побочным, диагоналям, следует придерживаться только второй партии.

Глава 5. ПАРАДОКСЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ

Теория вероятностей представляет собой область математики, необычайно богатую парадоксами - истинами, настолько противоречащими здравому смыслу, что поверить в них трудно даже после того, как правильность их подтверждена доказательством. Прекрасный пример этому - парадокс с днями рождения. Выберем наугад 24 человека. Какова, по вашему мнению, вероятность того, что двое или большее число из них родились в один и тот же день одного и того же месяца (но, быть может, в разные годы)? Интуитивно чувствуется, что вероятность такого события должна быть очень мала. На самом же деле она оказывается равной 27/50, то есть чуть выше 50 %!

Вероятность того, что дни рождения любых двух людей не совпадают, очевидно, равна 364/365 (поскольку лишь в одном случае из 365 возможных дни рождения совпадают). Вероятность несовпадения дня рождения третьего человека с днем рождения любых двух других членов отобранной группы составляет 363/365. Для четвертого человека вероятность того, что его день рождения отличается от дней рождения любых трех людей, равна 362/365 и т. д. Дойдя до двадцать четвертого участника эксперимента, мы увидим, что вероятность несовпадения его дня рождения с днями рождения остальных двадцати трех участников равна 342/365/ Таким образом, мы получаем набор из 23 дробей. Перемножив их, мы найдем вероятность того, что все 24 дня рождения различны. Сократив числитель и знаменатель произведения двадцати четырех дробей, мы получим дробь 23/50, Иначе говоря, заключая пари на то, что среди 24 по крайней мере двое родились в один и тот же день, вы будете выигрывать в 27 и проигрывать в 23 случаях из 50. (Проведенный нами подсчет вероятности не совсем точен, он не учитывает того, что год может быть високосным - то есть в феврале может быть 29 дней - и что дни рождения чаще приходятся на одни месяцы и реже на другие.

Первое обстоятельство уменьшает вероятность интересующего нас события, второе - увеличивает.)

Приведенные цифры настолько неожиданны, что экспериментальная проверка их в классе или среди сослуживцев может явиться отличным развлечением. Если присутствует более 23 человек, попросите каждого написать на листке бумаги его день рождения.

Соберите и сложите листки. Скорее всего по крайней мере две даты совпадут, что обычно вызывает невероятное удивление даже у людей, знакомых друг с другом в течение многих лет. Результат не изменится, если кто-нибудь схитрит, написав неправильную дату.

Вероятность совпадения остается и в этом случае.

Еще проще проверить парадокс, выбирая случайным образом даты рождения 24-х людей из книги "Кто есть кто" или какого-нибудь другого биографического справочника. Естественно, что чем большее число имен превышает 24, тем больше вероятность совпадения. На рис. 21 изображена кривая, показывающая рост вероятности с увеличением числа людей.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке