При активации двигательных нервов в нервно-мышечном синапсе происходит выброс химического медиатора ацетилхолина , который передает мышце команду сокращаться. (Многие другие нейроны тоже используют ацетилхолин для передачи информации различным клеткам-мишеням.) На мембране мышечного волокна ацетилхолин связывают специализированные крупные молекулы, называемые рецепторами (это не то, что мы называем рецепторами в сенсорных системах). Воздействие ацетилхолина на рецепторы может быть усилено никотином и, наоборот, блокировано растительным ядом кураре. (Кураре успешно применяется при охоте с помощью лука, так как животное, пораженное стрелой, смоченной в кураре, уже не может убежать.) При заболевании, называемом "миастения гравис", мышцы также утрачивают способность реагировать на ацетилхолин, но по другой причине: разрушаются ацетилхолиновые рецепторы на мышечных клетках.
В большинстве случаев наши мышцы сокращаются лишь тогда, когда мы этого хотим. Поэтому такие движения называются произвольными (см. рис. 8). Но даже тогда, когда мы делаем то движение, которое решили сделать, мы не осознаем, какие мышцы и каким образом в нем участвуют. За редкими исключениями, мы фактически не умеем приводить в действие ту или иную мышцу в отдельности. И тем не менее общий термин "произвольные" отделяет движения этого типа от рефлекторных движений , которые имеют место в тех, например, случаях, когда вы, неосторожно коснувшись раскаленной плиты, отдергиваете руку, еще не успев почувствовать боль.
Независимо от внешней причины двигательной активности мышечные волокна активируются только по приказу двигательного нерва. Поэтому мы говорим о двигательном аксоне и мотонейроне (спинномозговом нейроне, которому этот аксон принадлежит) как об общем конечном пути для управления движением. Любое отдельное мышечное волокно контролируется только одним мотонейроном, но один мотонейрон может контролировать много мышечных волокон с помощью разветвлений своего аксона. Число волокон, управляемых одним мотонейроном, варьирует в зависимости от того, насколько тонкими должны быть движения мышцы. В глазодвигательных мышцах на каждый нейрон приходится примерно по три мышечных волокна; в мышцах, приводящих в движение бедро, на один нейрон приходится сотня мышечных волокон.
Сила, которую может развить мышца, зависит от числа содержащихся в ней мышечных волокон. У мотонейронов, контролирующих крупные мышцы, такие как бицепсы или мышцы голени, аксоны должны иметь много разветвлений, чтобы иннервировать все мышечные волокна, причем веточки аксонов в этом случае гораздо толще, чем у нейронов, управляющих мелкими мышцами пальцев.
Спинной мозг - вместилище мотонейронов
Двигательный нейрон (мотонейрон) и его аксон вместе с мышечными волокнами, которые он контролирует, называют двигательной единицей . Такие единицы можно приближенно сравнить с входными участками сенсорных систем в том отношении, что они ближе всего к внешнему миру. В этом смысле спинной мозг занимает в нейронном "конвейере" примерно такое же положение, как сетчатка в зрительной системе. И спинной мозг, и сетчатка представляют собой скопления нейронов, несколько отодвинутые с периферии вглубь и осуществляющие важные этапы интеграции и фильтрации сигналов с использованием локальных сетей. Относительно простые виды интеграции, возможные на уровне спинного мозга, являются, однако, лишь прелюдией по отношению к более мощным и детализированным двигательным актам, которые могут выполняться под управлением спинного мозга при получении им соответствующих команд из двигательных центров коры больших полушарий.
Спинальные рефлексы . Мышцы снабжены также и чувствительными нервами. Эти нервы участвуют в проприоцепции - позволяют нам чувствовать положение и движения собственного тела. Сенсорные датчики находятся либо в глубине мышц, в специальных комплексах, называемых мышечными веретенами, либо в сухожилиях, там, где мышцы прикрепляются к кости. Эти датчики информируют спинной мозг или двигательные центры более высоких уровней о том, какое напряжение развивает в данный момент мышца. Эта информация помогает определить положение сустава, а тем самым и исходную позицию для начала следующего движения.
Когда доктор во время осмотра проверяет ваши рефлексы, он ударяет молоточком по сухожилию ниже коленной чашки. От этого удара растягивается и расположенное выше сухожилие, прикрепленное непосредственно к четырехглавой мышце бедра. В результате активируются находящиеся в этом сухожилии рецепторы, которые по сенсорным волокнам передают возбуждение спинальным мотонейронам, и последние заставляют мышцу бедра сократиться, а вашу ногу - подпрыгнуть (рис. 57, слева). Весь рефлекс совершается очень быстро, обычно меньше чем за секунду, - так проворно эти нейроны управляются со своими местными делами.
Другие локальные решения, которые также принимаются спинным мозгом, связаны, например, с болевыми раздражителями. Если вас когда-нибудь ударяло током при попытке вытащить из тостера застрявший там кусок хлеба, то вы, возможно, заметили, что ваша рука взлетала в воздух еще до того, как вы почувствовали боль. Под контролем спинного мозга ваша пострадавшая конечность автоматически отдергивается в результате ее сгибания в суставах. При таких неврологических заболеваниях, как рассеянный склероз и амиотрофический боковой склероз , одна из неприятностей состоит в том, что сенсорные нервы не обеспечивают должного выполнения сгибательных рефлексов. В результате больные страдают от частых и длительных соприкосновений с повреждающими объектами.
Реципрокный контроль мышц-антагонистов . Если вы, находясь в сидячем положении, наступите на кнопку, то можете даже не обратить внимания на то, что вы отдернули пораненную ступню, согнув ее. Но вместо этого вы можете заметить, что ваша другая нога отреагировала противоположным движением - разгибанием ступни. Такое движение конечностей называется "перекрестным разгибанием" (рис. 57, справа). Связи между мотонейронами, контролирующими этот рефлекс, устанавливаются в спинном мозге еще до рождения. (Даже младенец, если его держать в вертикальном положении, чтобы он мог свободно двигать ногами, перебирает ими как при ходьбе. Эти движения обусловлены в основном активацией рецепторов кожи и сухожильных рецепторов растяжения.) Сенсорные нервные волокна, расположенные на подошве одной стопы, непосредственно активируют спинальные мотонейроны, которые вызывают сокращение мышц-сгибателей конечности, подвергшейся раздражению. Ветви тех же самых сенсорных волокон возбуждают мотонейроны, контролирующие разгибатели другой ноги.

Рис. 57. Когда происходит простое рефлекторное действие, рецепторы растяжения мышцы-разгибателя непосредственно вызывают активацию мотонейронов этой мышцы, что ведет к ее сокращению. При перекрестном рефлекторном действии внутренние связи данного сегмента спинного мозга позволяют периферическим кожным рецепторам и рецепторам растяжения вызывать координированные мышечные сокращения без участия высших уровней двигательной системы. В зависимости от схемы связей команды, поступающие к мотонейронам, управляют мышцами-антагонистами - сгибателями или разгибателями.
Этот реципрокный мышечный контроль и свойственная спинному мозгу перекрестная иннервация позволяют уравновешивать движения наших рук и ног во время ходьбы и почти всех других видов физической активности. Что, например, происходит, когда вы вытягиваете руку вперед и пытаетесь держать ее неподвижно, показывая на какое-нибудь пятно на стене? Мышцам, удерживающим руку в поднятом положении, противодействуют другие, не позволяющие ей подняться слишком высоко. Постоянный контроль за равновесием между группами мышц-антагонистов обеспечивают проприоцептивные нервы, оперативно сообщающие об относительном напряжении и длине соответствующих мышц. Рецепторы, находящиеся внутри сокращенной мышцы, активируются, когда мышца растягивается под действием своего антагониста. Сухожильные рецепторы растяжения возбуждаются по мере развития напряжения в мышце, прикрепленной к кости данным сухожилием. Если у вас устали мышцы плечевого пояса, ваша рука начинает опускаться. Мышечные волокна растягиваются и возбуждают мотонейроны, контролирующие плечевую мускулатуру. В то же время падение мышечного напряжения снижает активность сухожильных рецепторов, и их тормозящее воздействие на мотонейроны ослабевает. В результате усиливается сокращение плечевой мускулатуры и восстанавливается ее воздействие на руку.
С помощью внутренних, локальных систем спинного мозга контроль над всеми этими изменениями осуществляется автоматически, как только выбрана соответствующая программа движения. Однако само решение поднять руку вверх и указывать ею на какое-либо пятно на стене принимается центром более высокого порядка. Первоисточник приказов, получаемых мотонейронами спинного мозга, - это нейроны двигательной коры.
Двигательная кора