Примечания к главе 6
Greek Political Theory, I, 388 и след.) верно подмечает влияние Платона на Руссо. Однако он не заметил значительного элемента романтизма у Платона. Кроме того, часто недооценивается тот факт, что сельский романтизм, повлиявший как на Францию, так и на Англию времен Шекспира посредством «Аркадии» Я. Санаццаро (J. Sanazzaro. Arcadia), имеет своим источником платоновские описания дорийских пастухов (см. прим. 11 (3), 26 и 32 к гл. 4, а также прим. 14 к гл. 9).
Идеализация Платона сыграла немалую роль в спорах о подлинности ряда приписываемых ему работ. Некоторые критики отрицали авторство Платона лишь на том основании, что в вызывавших сомнения работах содержались фрагменты, не соответствовавшие их идеализированному взгляду на Платона. Наивное и в равной степени типичное выражение этой установки можно найти во «Вводной статье» Дж. Дэвиса и Ч. Э. Воэна к «Государству» Платона (J. L. Davies, С. Е. Vaughan. Introductory Notice) (сравните,е другим изданием «Государства» «Republic», Golden Treasury ed., p. VI): «Усердствуя в своем стремлении свергнуть Платона со сверхчеловеческого пьедестала, Дж. Гроут готов приписать ему сочинения, которые уже признаны недостойными этого божественного философа». Авторам, вероятно, не приходит в голову, что их суждение о Платоне должно было бы зависеть от написанных им трудов, а не наоборот. Кроме того, если эти сочинения подлинны и недостойны Платона, то его вряд ли можно считать божественным философом. (О божественности Платона см. Simplicius. Arist. de coelo, 32 b 44, 319 a 15 и след.)
b-с, процитированный в тексте к прим. 29 к гл. 5. См. также прим. 23 и 40 к настоящей главе.
(Следующий далее текст до конца примечания 9 был впервые добавлен к американскому изданию 1950 года.)
О взглядах Платона на политическую справедливость и равенство, как они изложены в «Законах», см. особенно фрагмент о двух видах равенства («Законы», 757 b-d), цитируемый далее в пункте (1). О том, что при распределении почестей и наказаний следует учитывать не только добродетели и воспитанность, но и здоровье (и даже рост и благообразность), см. «Законы», 744 с. Этот отрывок процитирован в прим. 20 (1) к настоящей главе, где рассмотрены и другие фрагменты, затрагивающие данную тему.
(1) В «Законах», 757 b-d Платон анализирует «два вида равенства». Прежде всего Платон пишет: «Из этих двух видов первому может отвести почетное место всякое государство и всякий законодатель, руководя его распределением с помощью жребия: таково равенство меры, веса, числа. Но любому человеку нелегко усмотреть самое истинное и наилучшее равенство Большему оно уделяет больше, меньшему меньше, каждому даря то, что соразмерно его природе. Особенно большой почет воздает оно всегда людям наиболее добродетельным; противоположное же тем, кто меньше преуспел в добродетели и воспитанности. Каждому оно разумно дарит надлежащее. У нас все относящееся к государственному устройству постоянно совпадает со справедливостью Если кто-то когда-нибудь будет устраивать другое государство, то и ему надо будет издавать законы, постоянно имея в виду именно это справедливость В этом-то и заключается только что высказанная нами мысль о равенстве, установленном в каждом отдельном случае для неравных согласно природе» (курсив частично мой). Второй вид равенства соответствует тому, что Платон называет «политической справедливостью», а Аристотель «распределительным правом». Этот вид равенства Платон и Аристотель описывают как «пропорциональное равенство» самое истинное, самое естественное и самое лучшее равенство. Позже Платон назвал его «геометрическим» равенством («Горгий», 508 а; см. также 465 b/с и Плутарх. Moralia, 719 b и след.) в противоположность
более низкому и демократическому «арифметическому» равенству. Понимание этих видов равенства поясняется в (2).
(2) Традиционно считается (см. Comm. in Arist. Graeca, pars XV, Berlin, 1879, p. 117, 29; pars XVIII, Berlin, 1900, p. 118, 18), что изречение у входа в платоновскую Академию гласило: «Да не переступит этого порога тот, кто не искушен в геометрии!». Как мне представляется, этот лозунг не только подчеркивал важность математических исследований, но и означал следующее: «Арифметики (точнее пифагорейской теории чисел) недостаточно вы должны знать геометрию!». Я попытаюсь в общих чертах пояснить, почему последняя фраза верно отражает самое важный вклад Платона в науку. См. также «Дополнение I» к тому 1.
Теперь уже общеизвестно, что подход ранних пифагорейцев к геометрии методологически был сходен с тем, что сегодня называют «арифметизацией». Геометрия считалась частью теории чисел (или «натуральных» чисел, т.е. чисел, составленных из монад или «неделимых единиц» см. «Государство», 525 е) и теории их «λογοι», т.е. «рациональных» отношений. Пифагорейские прямоугольные треугольники, например, могли иметь стороны, отношения между которыми выражались отношениями или пропорциями целых чисел (3:4:5 или 5 : 12 : 13). Общая формула вывода таких пропорций, открытие которой приписывается Пифагору, имеет такой вид: