Dawson Terry - Linux Network Administrator Guide, Second Edition стр 19.

Шрифт
Фон

Linux kernels up to and including Version 2.0 support PLIP mode 0 only, and an enhanced parallel port driver exists as a patch against the 2.0 kernel and as a standard part of the 2.2 kernel code to provide PLIP mode 1 operation, too. Unlike earlier versions of the PLIP code, the driver now attempts to be compatible with the PLIP implementations from Crynwr, as well as the PLIP driver in NCSA telnet. To connect two machines

Fight to clear the hacking name! Always use "cracker" when you are referring to people who are consciously trying to defeat the security of a system, and "hacker" when you are referring to people who have found a clever way of solving a problem. Hackers can be crackers, but the two should never be confused. Consult the New Hackers Dictionary (popularly found as the Jargon file) for a more complete understanding of the terms.
The enhanced parallel port adaptor patch for 2.0 kernel is available from http://www.cyberelk.demon.co.uk/parport.html.
NCSA telnet is a popular program for DOS that runs TCP/IP over Ethernet or PLIP, and supports telnet and FTP.

which also runs under Linux, is described in detail in Chapter 16, Managing Taylor UUCP. Other noninteractive communications software is used throughout networks such as Fidonet. Fidonet application ports like ifmail are also available, although we expect that not many people still use them.

PPP and SLIP are in between, allowing both interactive and noninteractive use. Many people use PPP or SLIP to dial in to their campus network or other Internet Service Provider to run FTP and read web pages. PPP and SLIP are also, however, commonly used over permanent or semipermanent connections for LAN-to-LAN coupling, although this is really only interesting with ISDN or other high-speed network connections.

Introduction to Serial Devices

tty Teletype device

Linux provides three classes of tty devices: serial devices, virtual terminals (all of which you can access in turn by pressing Alt-F1 through Alt-Fnn on the local console), and pseudo-terminals (similar to a two-way pipe, used by applications such as X11). The former were called tty devices because the original character-based terminals were connected to the Unix machine by a serial cable or telephone line and modem. The latter two were named after the tty device because they were created to behave in a similar fashion from the programmer's perspective.

SLIP and PPP are most commonly implemented in the kernel. The kernel doesn't really treat the tty device as a network device that you can manipulate like an Ethernet device, using commands such as ifconfig. However, it does treat tty devices as places where network devices can be bound. To do this, the kernel changes what is called the "line discipline" of the tty device. Both SLIP and PPP are line disciplines that may be enabled on tty devices. The general idea is that the serial driver handles data given to it differently, depending on the line discipline it is configured for. In its default line discipline, the driver simply transmits each character it is given in turn. When the SLIP or PPP line discipline is selected, the driver instead reads a block of data, wraps a special header around it that allows the remote end to identify that block of data in a stream, and transmits the new data block. It isn't too important to understand this yet; we'll cover both SLIP and PPP in later chapters, and it all happens automatically for you anyway.

Accessing Serial Devices

/dev

The most important of the two classes of serial device has a major number of 4, and its device special files are named ttyS0 , ttyS1 , etc. The second variety has a major number of 5, and was designed for use when dialing out (calling out) through a port; its device special files are called cua0 , cua1 , etc. In the Unix world, counting generally starts at zero, while laypeople tend to start at one. This creates a small amount of confusion for people because COM1: is represented by /dev/ttyS0 , COM2: by /dev/ttyS1 , etc. Anyone familiar with IBM PC-style hardware knows that COM3: and greater were never really standardized anyway.

The cua , or "callout," devices were created to solve the problem of avoiding conflicts on serial devices for modems that have to support both incoming and outgoing connections. Unfortunately, they've created their own problems and are now likely to be discontinued. Let's briefly look at the problem.

Linux, like

you are using special serial hardware, such as a high-performance multiple port serial controller, you will probably need to create special device files for it; it probably won't use the standard device driver. The Serial-HOWTO should be able to assist you in finding the appropriate details.

Assume your modem is on COM2:. Its minor number will be 65, and its major number will be 4 for normal use. There should be a device called ttyS1 that has these numbers. List the serial ttys in the /dev/ directory. The fifth and sixth columns show the major and minor numbers, respectively:

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке