tr0 , tr1 ,
These are the Token Ring card interfaces. They are used for most Token Ring cards, including non-IBM manufactured cards.
sl0 , sl1 ,
These are the SLIP interfaces. SLIP interfaces are associated with serial lines in the order in which they are allocated for SLIP.
ppp0 , ppp1 ,
These are the PPP interfaces. Just like SLIP interfaces, a PPP interface is associated with a serial line once it is converted to PPP mode.
plip0 , plip1 ,
These are the PLIP interfaces. PLIP transports IP datagrams over parallel lines. The interfaces are allocated by the PLIP driver at system boot time and are mapped onto parallel ports. In the 2.0.x kernels there is a direct relationship between the device name and the I/O port of the parallel port, but in later kernels the device names are allocated sequentially, just as for SLIP and PPP devices.
ax0 , ax1 ,
These are the AX.25 interfaces. AX.25 is the primary protocol used by amateur radio operators. AX.25 interfaces are allocated and mapped in a similar fashion to SLIP devices.
There are many other types of interfaces available for other network drivers. We've listed only the most common ones.
During the next few sections, we will discuss the details of using the drivers described previously. The Networking HOWTO provides details on how to configure most of the others, and the AX25 HOWTO explains how to configure the Amateur Radio network devices.
Ethernet Installation
level at which debugging information is displayed. Values of 1 through 7 denote increasing levels of verbosity, while 8 turns them off altogether; 0 denotes the default. The 3c503 driver uses param2 to choose between the internal transceiver (default) or an external transceiver (a value of 1). The former uses the card's BNC connector; the latter uses its AUI port. The param arguments need not be included at all if you don't have anything special to configure.
The first non-numeric argument is interpreted by the kernel as the device name. You must specify a device name for each Ethernet card you describe.
If you have two Ethernet cards, you can have Linux autodetect one card and pass the second card's parameters with lilo, but you'll probably want to manually configure both cards. If you decide to have the kernel probe for one and manually configure the second, you must make sure the kernel doesn't accidentally find the second card first, or else the other one won't be registered at all. You do this by passing lilo a reserve option, which explicitly tells the kernel to avoid probing the I/O space taken up by the second card. For instance, to make Linux install a second Ethernet card at 0x300 as eth1 , you would pass the following parameters to the kernel:
reserve=0x300,32 ether=0,0x300,eth1
The reserve option makes sure no driver accesses the second card's I/O space when probing for some device. You may also use the kernel parameters to override autoprobing for eth0 :
reserve=0x340,32 ether=0,0x340,eth0
You can turn off autoprobing altogether. You might do this, for example, to stop a kernel probing for an Ethernet card you might have temporarily removed. Disabling autoprobing is as simple as specifying a base_addr argument of -1:
ether=0,-1,eth0
To supply these parameters to the kernel at boot time, you enter the parameters at the lilo "boot:" prompt. To have lilo give you the "boot:" at the prompt, you must press any one of the Control, Alt or Shift keys while lilo is booting. If you press the Tab key at the prompt, you will be presented with a list of kernels that you may boot. To boot a kernel with parameters supplied, enter the name of the kernel you wish to boot, followed by a space, then followed by the parameters you wish to supply. When you press the Enter key, lilo will load that kernel and boot it with the parameters you've supplied.
To make this change occur automatically on each reboot, enter the parameters into the /etc/lilo.conf using the append= keyword. An example might look like this:
boot=/dev/hda
root=/dev/hda2
install=/boot/boot.b
map=/boot/map
vga=normal
delay=20
append="ether=10,300,eth0"
image=/boot/vmlinuz-2.2.14
label=2.2.14 read-only
After you've edited lilo.conf , you must rerun the lilo command to activate the change.
The PLIP Driver
Parallel Line IPPLIP was originally developed by Crynwr, Inc. Its design at the time was rather ingenious (or, if you prefer, a hack), because the original parallel ports on IBM PCs were designed to spend their time being unidirectional printer ports; the eight data lines could be used only to send data from the PC to the peripheral device, but not the other way around. The Cyrnwr PLIP design worked around this limitation by using the port's five status lines for input, which limited it to transferring all data as nibbles (half bytes) only, but allowed for bidirectional transfer. This mode of operation was called PLIP "mode 0." Today, the parallel ports supplied on PC hardware cater to full bidirectional 8-bit data transfer, and PLIP has been extended to accomodate this with the addition of PLIP "mode 1."