При измерениях в прямом потоке исследуемые и эталонные элементы должны быть ориентированы на Солнце с точностью 2°, причем их поле зрения следует ограничить углом 10°. Измерения можно проводить при плотности потока излучения (определяемой по эталонному элементу) не менее 750 Вт/м2 при m3.
При измерениях в полном потоке измеряемый и эталонный элементы ориентируются на Солнце с точностью ±5° и устанавливаются под углом к горизонтальной плоскости не более 60°. Плотность потока излучения должна быть не менее 800 Вт/м2, атмосферная масса не более 2. Мутность атмосферы, облачность и альбедо подстилающей поверхности контролируются в период измерений по общему действию рассеянного излучения на солнечные элементы: отношение тока эталонного элемента при измерениях в полном потоке, к току, измеряемому в прямом потоке, не должно превышать 1,3. Поле зрения эталонного элемента при измерении плотности прямого потока необходимо снизить до 10°.
Важность стандартизации спектра солнечного излучения и состава атмосферы при измерениях можно проиллюстрировать следующим примером: при одинаковой атмосферной массе 1,5 и безоблачном небе в зависимости от влажности и количества аэрозольных частиц плотность прямого потока солнечного излучения может изменяться, как показывают данные натурных измерений, от 943 до 616 Вт/м2.
Глава 2
ПРИНЦИП ДЕЙСТВИЯ, КОНСТРУКЦИЯ
И ХАРАКТЕРИСТИКИ СОЛНЕЧНЫХ ЭЛЕМЕНТОВ
Оптические и электрофизические свойства полупроводниковых кристаллов и слоев
Около тридцати лет прошло с момента проведения первых работ, положивших начало современной фотоэлектрической энергетике. Эти исследования, в свою очередь, опирались на стройную теорию фотоэлектрических явлений в полупроводниках, созданную в 3040-е годы нашего столетия. В СССР развитие этого направления физики полупроводников определили работы академика А. Ф. Иоффе и его школы, углубившие наше понимание природы фотопроводимости и фотоэлектрических явлений в полупроводниках и полупроводниковых р-n-переходах[1].
Вполне закономерно, что созданию солнечных элементов предшествовали детальное изучение оптических свойств полупроводников и исследование процессов взаимодействия света с веществом внутри полупроводникового материала, приводящих к появлению избыточных, неравновесных носителей заряда.
Для понимания оптических и фотоэлектрических свойств солнечных элементов необходимо хотя бы кратко рассмотреть качественные особенности зонной структуры полупроводников, ее отличие от электронного строения металлов и изоляторов и основные оптические характеристики полупроводниковых веществ. Полезно также описать методы исследования оптических, структурных и электрофизических параметров отдельных полупроводниковых слоев элементов. Эти параметры в значительной мере определяют как характеристики, так и эффективность солнечных элементов и батарей.
При образовании твердого тела, например кристалла полупроводника, атомы настолько сближаются друг с другом, что их внешние электронные оболочки перекрываются.
Вместо индивидуальных орбит отдельных атомов появляются коллективные орбиты, и подоболочки атомов объединяются в зоны, единые для всего кристалла. Характер движения электронов при этом изменяется кардинальным образом: электроны, находящиеся на определенном энергетическом уровне одного атома, получают возможность без затраты
энергии переходить на подобный же уровень соседнего атома и тем самым свободно перемещаться вдоль всего кристалла.
Внутренние оболочки в изолированных атомах, а следовательно, и в кристаллах целиком заполнены. Самая же верхняя зона, образованная из уровней, на которых располагались валентные электроны, не всегда заполнена до конца. Электропроводность кристаллов, их оптические и многие другие свойства в основном определяются степенью заполнения валентной зоны и расстоянием от нее до самой верхней зоны, получившей название зоны проводимости. Электроны, попавшие из валентной зоны, например за счет теплового или оптического возбуждения, в зону проводимости, могут принимать участие в переносе электрического тока. Перемещение электронов на освободившиеся места в валентной зоне создает встречное движение положительных зарядов, называемых дырками. Положительный заряд всегда образуется в валентной зоне после ухода электрона, ведь до этого зона была электронейтральпой.
Вещества, у которых валентная зона заполнена целиком, а расстояние до следующей зоны велико, называются диэлектриками.
Для металлов характерно другое энергетическое строение: валентная зона заполнена частично либр перекрывается со следующей свободной зоной, зоной проводимости.
Если же у вещества валентная зона заполнена целиком, но энергетическое расстояние до зоны проводимости мало (условно менее 2 Эв), то такие вещества называют полупроводниками. Электропроводность и другие свойства полупроводников сильно зависят от внешних условий, особенно от температуры Т. C повышением T экспоненциально растет число тепловых перебросов электронов через запрещенную зону с энергетической шириной Eg, разделяющую валентную зону и зону проводимости, увеличивается число электронов в зоне проводимости и дырок в валентной зоне, а электропроводность полупроводника σ возрастает по закону