Джованни Реале - Западная философия от истоков до наших дней. Т. 4. От романтизма до наших дней стр 171.

Шрифт
Фон

длина стержня связана с направлением его движения: масса тела увеличивается с увеличением скорости.

Наконец, знаменитая формула E = тс2 связала массу с энергией. Все эти выводы были подкреплены множеством экспериментов. Переход от классической механики к частной теории относительности был назван Куном научной революцией, ибо произошла глобальная смена основания теории. Только через одиннадцать лет Эйнштейн предложил более обобщенную, чем прежняя, теорию. Законы физики не меняются в любой системе отсчета, даже в системе, движущейся с ускорением, если учитываются гравитационные эффекты, такова суть общей теории относительности. Эйнштейн констатирует, что масса тела остается постоянной, если она измерена согласно общему закону гравитации (второму закону динамики: инерционная масса равна гравитационной массе).

Отсюда следует возможность соотнесения любого эффекта ускорения с соответствующими гравитационными полями, что меняет геометрическую структуру пространства. Получается, что любая физическая проблема решается, в конечном счете, через изучение геометрических свойств пространства. Общая теория относительности включает в себя как элемент частную теорию относительности,

сохраняя все ее выводы и присоединяя к ним новые, вытекающие из новых экспериментальных данных. Среди последних точные траектории движения планет, искривление светового луча в гравитационном поле и смещение спектральных линий в зоне света, испускаемого звездами большой массы. Так был открыт путь развития «нормальной» науки со все более мощной разработкой математического аппарата, с одной стороны, и, с другой с проверкой теоретических конструкций экспериментальными данными, что всегда давало позитивный результат. Из новейших экспериментов на эту тему наиболее интересными представляются те, что связаны с изучением гравитационных волн космического происхождения.

2.3. Квантовая теория

Решение Планка состояло в гипотезе, что энергия выделяется и аккумулируется материей не в форме непрерывной радиации, а только множеством порций определенного количества, пропорционального частоте радиации v и некой постоянной h (постоянная Планка). Количество Av названо «квантом энергии», а постоянная h «квантом действия». Интересно с концептуальной точки зрения то, что Планк (как и Эйнштейн) не пытался согласовать свое открытие с экспериментальной очевидностью. Именно Эйнштейн дал первое обоснование теории Планка. Он предположил, что любая радиация квантуется. Частицу, соответствующую радиации с частотой v, имеющую энергию hv и количество движения h v/c, назвали фотоном. Так фотоэлектронный эффект был вписан в общую теорию и ею подтвержден.

В 1923 г. решена аналогичная проблема относительно испускания электронами гамма-лучей (эффект Комптона). Изучение структуры атома начато Томсоном (18561940) в 1897 г. с открытия электрона, заряд которого был определен в 1911 г. Р. Милликеном (18681953). Были предложены две различные модели. Согласно первой (Перрен), атом состоит из ядра, вокруг которого вращаются электроны (1901). Согласно второй (Кельвин), в положительно заряженном атоме электроны находятся в условиях равновесия (1902). Мы перед лицом двух соперничающих теорий ядерной и неядерной. Первая теория победила благодаря историческому эксперименту Резерфорда (18711937) с пучком частиц (ядер гелия) и тончайшей золотой пластинкой.

Ситуацию с электронами попытался прояснить Н. Бор (1885 1962). Он предположил, что электроны вращаются по круговым орбитам, рассчитываемым согласно законам энергетического квантования, и атомы принимают и испускают энергию с помощью электронов, прыгающих с одной орбиты на другую. Эта модель была усовершенствована Зоммерфельдом (18681951).

Первые подтверждения и частичные фальсификации были получены из спектроскопии. Однако опыты Штерна и Герлаха укрепили теорию Бора. Ясно, что эти идеи не могут не контрастировать с идеями Максвелла для макроскопических явлений. Но сам Н. Бор в 1916 г. во избежание потенциального противоречия предложил считать теорию Максвелла статическим описанием поведения большого числа элементарных компонентов. Это первая формулировка «принципа соответствия», ключевого для понимания и применения квантовой теории. Ситуация не слишком отличалась от характерной для прошлого века попытки преодолеть разрыв между макроскопической термодинамикой и микроскопической классической механикой.

В 1924 г. Луи де Бройль предположил, что каждой электромагнитной волне соответствует частица, и наоборот, любой частице с массой покоя т0 и скоростью v соответствует волна длиной k = h/m (0). Так было положено начало волновой механике. Основываясь на все более широкой экспериментальной базе, Бор предложил рассматривать каждый феномен в двух аспектах корпускулярном и волновом, считая оба истинными и взаимодополняющими. Принцип дополнительности был сформулирован В. Гейзенбергом (1901 1976), установившим точные пределы возможно одновременного определения величин, относящихся к двум дополнительным аспектам. Из принципа дополнительности следовало, например, что нельзя одновременно и точно определить импульс и координаты частицы. Волновая механика была систематизирована Шрёдингером (1887-1961) и М. Борном (1882-1960).

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке