30
Чем и как изучают Вселенную
слона за хвост, после чего объявлял, что слон похож на веревку?
Существующие в наше время радиотелескопы работают в диапазоне длин волн от миллиметров до метров. Они бывают полностью подвижными, полуподвижными и неподвижными. Широко известен неподвижный радиотелескоп в Аресибо (Пуэрто-Рико), введенный в эксплуатацию еще в 1963 году и честно служащий науке до сих пор (рис. 7). Неподвижная 305-м чаша этого радиотелескопа построена в естественном карстовом провале. Над чашей на высоте 135 м находится конструкция с приемной и передающей аппаратурой, подвешенная с помощью системы тросов к трем вертикальным колоннам. Немного смещая эту конструкцию в ту или иную сторону, можно расширить полосу неба, доступную для наблюдений, до 40 градусов. Дважды пережив серьезные реконструкции, «Аресибо» теперь позволяет вести наблюдения в диапазоне длин радиоволн от 3 см до 1 м с очень хорошей
31
Часть I
чувствительностью. Он способен уловить сигнал от мобильного телефона, находящегося на Венере, или послать сигнал, который может быть зафиксирован на другом краю Галактики. В «актив» этого инструмента можно записать точное определение периода вращения Меркурия, проведение радиолокационных наблюдений Венеры, первое открытие планеты у пульсара, исследование двойного радиопульсара, приведшее к подтверждению существования гравитационных волн...
Чувствительность радиотелескопов (определяемая как минимальная регистрируемая плотность потока излучения) выше, чем у оптических инструментов, спектральное разрешение также выше, зато с угловым разрешением одиночного радиотелескопа дело обстоит куда хуже, поскольку угловое разрешение пропорционально отношению длины волны к апертуре инструмента. Если на практике разрешение крупного оптического телескопа, установленного в месте с хорошим астроклиматом, может (иногда) достигать 0,3 с дуги1, то у радиотелескопов эта величина исчисляется минутами дуги.
Казалось бы, при таких условиях можно сразу забыть о построении радиоизображений космических объектов однако нет. На помощь приходит радиоинтерферометрия. Если мы будем наблюдать один и тот же объект одновременно с двух радиотелескопов, связанных между собой и разнесенных на расстояние, называемое базой интерферометра, то угловое разрешение будет определяться уже не диаметром чаши телескопа, а базой. Почти ничего не выиграв в чувствительности инструмента, мы колоссально повысим угловое разрешение! Например, американская система VLA состоит из 27 параболических антенн 25-м диаметра, расположенных в виде буквы Y, и имеет базу в 47 км. Разрешающая способность этой системы на волне 6 см составляет 0,3 с дуги, что равно разрешению крупнейших оптических телескопов в условиях лучшего
1 Теоретически она выше, но влияние атмосферы при наземных наблюдениях резко ухудшает ситуацию. Примеч. авт.
32
Чем и как изучают Вселенную
астроклимата (не говоря уже о таком «мелком удобстве», как возможность использовать радиотелескоп круглосуточно, а не только ночью). Если требуется еще большее разрешение, необходимо удлинить базу. Интерферометрические наблюдения со сверхдлинными межконтинентальными и даже космическими базами давно уже перестали быть чем-то из ряда вон выходящим.
Между прочим без радиоастрономии мы вряд ли сумели бы понять процессы, связанные с рождением звезд, не говоря уже о пульсарах, квазарах, межзвездной среде... Но об этом ниже.
Возникает вопрос: можно ли осуществить интерферометрию не в радиодиапазоне с длинами волн от миллиметров до метров, а в иных диапазонах электромагнитных колебаний, скажем, в оптическом, где длины волн доли микрон? Задача оказалась крайне сложной, но решаемой. Четыре 8,2-м зеркала оптического телескопа VLT (рис. 8) могут работать в режиме интерферометра.
2 Вселен
33
Часть I
Предел мечтаний для астронома-наблюдателя вести непрерывные наблюдения всего неба с высокой чувствительностью, хорошим разрешением и во всех диапазонах электромагнитных волн. Но мечты мечтами, а практика, как известно, вещь жестокая. Если мы захотим вести наблюдение неба в инфракрасном (ИК) или ультрафиолетовом (УФ) диапазоне, то сразу столкнемся с проблемой: поглощение волн определенных частот молекулами атмосферы столь велико, что обычно говорят об «окнах прозрачности» вне этих «провалов». Еще хуже в рентгеновском и гамма-диапазонах. Наземные наблюдения тут вообще невозможны. А между тем наблюдения вне оптического диапазона крайне полезны например, ИК-излучение практически без помех проходит сквозь облака галактической пыли, делающие объекты, находящиеся в них или за ними, ненаблюдаемыми в оптическом диапазоне. Еще один пример: открытие с помощью международного астрономического спутника IRAS кольца или диска из твердых частиц, окружающего одну из ярчайших звезд Вегу.
Начиная с 70-х годов прошлого века на околоземную орбиту выведено уже немало автоматических обсерваторий, оснащенных телескопами соответствующего диапазона. Срок их службы, как правило, невелик (несколько лет), и случается, что старый аппарат выходит из строя раньше, чем ему на смену будет запущен новый, более совершенный. Что поделать, даже NASA сплошь и рядом вынуждено выбирать из нескольких перспективных проектов один-два, откладывая остальные в долгий ящик...