Наиболее активно в прикладном смысле ИИ стал развиваться в 1990-е годы. Тогда, например, были созданы программы, которые позволили машине выигрывать у человека. В 1996 г. программа Deep Blue Chess обыграла гроссмейстера и чемпиона мира Гарри Каспарова[3].
Появление мощных графических процессоров и рост вычислительной мощности современных компьютеров, развитие облачных вычислений, взрывной рост больших данных позволили выполнять машинное обучение с высокой точностью.
В 2007 г. IBM создала открытую систему ответов на вопросы Watson, занявшую первое место в телевизионном игровом шоу Jeopardy в 2011 г. (в ситуациях конкуренции системы с людьми). В отличие от традиционных систем, которые использовали либо прямое рассуждение (следуя правилам от данных к выводам) и обратное (следуя правилам от выводов к данным), либо созданные вручную правила «если то», эта технология, называемая DeepQA, применяла обработку естественного языка и различные поиски для анализа неструктурированного контента для получения вероятных ответов. Система оказалась доступна, проще в обслуживании и более рентабельна [Kaul et al., 2020].
В 2016 г. разработанная Google программа AlphaGo (технология машинного обучения DeepMind) одержала победу над Ли Седолем, чемпионом мира по игре в го. Успех программы стал толчком для того, чтобы в марте 2016 г. ее создатели заключили соглашение с Национальной службой здравоохранения Великобритании для изучения возможностей применения ИИ при осуществлении анализа медицинских данных [Отбеткина, 2022, с. 851].
В январе 2017 г. программа Libratus, разработанная в Университете Карнеги Меллона, победила в 20-дневном покерном турнире «Brains Vs. Artifcial Intelligence: Upping the Ante»[4], что, безусловно, свидетельствует о качественном скачке в объемах производственных мощностей ИИ.
В настоящее время в мире происходит ускоренное внедрение технологий на основе ИИ в различные отрасли экономики и сферы общественных отношений, что, как ожидается, приведет к росту мировой экономики в 2024 г. не менее чем на 1 трлн долл. США.
Ускоренное внедрение технологий на основе ИИ обусловлено следующими факторами:
а) общий (сквозной) характер применения прикладных технологических решений;
б) высокая степень влияния технологий на основе ИИ на результативность деятельности организаций и человека, в том числе связанной с принятием управленческих решений;
в) высокая доступность инструментов (в том числе программ для ЭВМ с открытым кодом) для разработки технологий на основе ИИ;
г) потребность в обработке больших объемов данных, создаваемых как человеком, так и техническими устройствами, для повышения эффективности экономической и иной деятельности.
В 2018 г. мировой рынок технологических решений, разработанных на основе ИИ, составил 21,5 млрд долл. США и, по прогнозам экспертов, к 2024 г. достигнет почти 140 млрд долл. США [Указ, 2019].
Наиболее популярными для внедрения ИИ считаются отрасли рекламы, маркетинга, торговли, банковского дела, страхования, промышленности, военного дела. Однако довольно быстро технологии ИИ добрались и до медицины. Стремительное развитие технологий на основе ИИ сопровождается существенным ростом как государственных, так и частных инвестиций в их развитие, а также в разработку прикладных технологических решений. По оценкам международных экспертов, инвестиции в такие технологии выросли с 2020 по 2021 г. более чем в два раза, составив около 67 млрд долл. США[5]. При этом интерес инвесторов к рынку технологий ИИ в здравоохранении один из самых высоких (рис. 3).
Рис. 3. Рост инвестиций в технологии ИИ. Источник: [State of Al 2021 Report/ CBINSIGHTS. March 9. 2022. https://www.cbinsights.com/research/report/ai-trends-2021/(дата обращения: 22.10.2022), 2022].
Ведущие мировые технологические гиганты (Facebook[6], Google, Amazon, Apple, Microsof) вкладывают огромные денежные средства в разработку технологий ИИ для применения в своей бизнес-нише.
В России ИИ также активно развивается. Разработанные технологические решения на основе ИИ (например, компьютерное зрение и обработка естественного языка) уже сейчас обладают значительной коммерческой привлекательностью и высоким экспортным потенциалом на мировом рынке.
§ 3. Наборы данных для обучения и тестирования алгоритмов искусственного интеллекта
Разработка любой системы ИИ базируется на обработке и использовании определенного набора данных. Чем больше данных обработает алгоритм ИИ, тем более точно и корректно он сможет формулировать выводы на их основе. На этапах тестирования и эксплуатации системы структура и свойства набора данных также играют ключевую роль.
Подготовка набора данных включает определенные процедуры (рис. 4).
Рис. 4. Процесс подготовки набора данных для обучения и тестирования систем ИИ. Источник: [Национальный стандарт РФ ГОСТ Ρ 59921.5].
Подробнее рассмотрим основные процедуры. Задачи подготовки набора данных должны быть определены проблемой, целью создания системы ИИ, должны включать определение предметной области и выбор методов обработки данных. Например, в случае контролируемого машинного обучения алгоритм ИИ наблюдает набор размеченных данных и обучается функции, позволяющей предсказывать аннотацию для новых входных данных. Возможными типами задач контролируемого машинного обучения являются классификация и регрессия (аппроксимация и предсказание значения непрерывных параметров какого-либо объекта). При регрессии аннотация может принимать любое действительное значение, не ограничиваясь конечным набором категорий как при классификации.
В случае неконтролируемого машинного обучения алгоритм распознает паттерны (структуру) в неразмеченных данных. Возможными типами задач неконтролируемого машинного обучения являются кластеризация (группировка экземпляров данных в кластеры со сходными характеристиками) и детекция аномалий (идентификация редких экземпляров данных, существенно отличающихся от остальных).
Подход к формированию набора данных определяется необходимостью валидации системы ИИ.
Аналитическая валидация (analytical validation) подтверждение способности системы ИИ точно, воспроизводимо и надежно генерировать предполагаемые технические результаты вычислений из входных данных.
В этом случае необходимо представление данных: синдромов, заболеваний, исходов, отражающее максимальную вариативность (то есть и частые, и редкие случаи представлены в одинаковом объеме). Набор данных для аналитической валидации должен быть подготовлен для определения следующих характеристик: производительность (например, время, затрачиваемое на обработку системы ИИ медицинского исследования при наличии функции автоматического расчета времени и т. д.), точность интерпретации исследований с учетом функциональных возможностей системы ИИ, повторяемость, воспроизводимость.
Возможно включение исследований с нарушением технологии (внешние помехи, артефакты, неверное наложение электродов/датчиков, нарушение последовательности регистрации, укладки пациента). Такие исследования должны быть помечены должным образом. Для снижения систематической ошибки следует использовать данные из разных источников (например, из разных медицинских организаций) и разные модели оборудования.
Клиническая валидация (clinical validation) подтверждение способности системы ИИ выдавать клинически значимые выходные данные, связанные с ее целевым использованием в рамках установленного изготовителем функционального назначения.