Сверточная нейронная сеть (convolutional neural network, CNN) это тип алгоритма глубокого обучения, применяемого для обработки изображений, имитирующего поведение взаимосвязанных нейронов человеческого мозга. CNN состоит из нескольких слоев, которые анализируют входное изображение для распознавания шаблонов и создания определенных фильтров. Окончательный результат достигается за счет объединения всех функций полностью подключенных слоев. Сейчас доступно несколько алгоритмов CNN, включая Le-NET, AlexNet, VGG, GoogLeNet и ResNet.
Различные варианты нейронных сетей в виде упрощенных схем, позволяющих понять основные принципы их функционирования, показаны на рис. 1.
Рис. 1. Примеры нейронных сетей. Источник: [Van Veen F., Leijnen S. The Neural Network Zoo. 2019. https://www.asimovinstitute.org/neural-network-zoo (дата обращения: 09.09.2023)].
В настоящее время существуют различные типы и алгоритмы машинного обучения (рис. 2).
Рис. 2. Концепции ИИ и МО. Источник: [Machine Learning-enabled Medical Devices, 2021].
Существует много алгоритмов машинного обучения, отличающихся возможностями и ограничениями. К принципиальным характеристикам, присущим тому или иному алгоритму ИИ, можно отнести [Глизница и др., 2022]:
1. Интерпретируемость возможность установить основания принятого алгоритмом решения, открыть «черный ящик». Возможность объяснить решение, предлагаемое алгоритмом, значительно облегчает внедрение методов в медицинскую практику.
2. Устойчивость к мультиколлинеарности корреляционной связи между независимыми переменными, которая негативно сказывается на времени обучения и точности результата. В частности, учет избыточного числа переменных из медицинской карты приводит к формированию слишком сложной модели с несущественными признаками заболевания (эффект переобучения), не способной к обобщению.
3. Возможность выбора переменных, позволяющая снизить эффект мультиколлинеарности. Например, если алгоритм учел в построенной математической модели и национальность, и расовую принадлежность пациента, то возможность вручную исключить один из параметров, не редактируя набор данных, значительно облегчит работу с системой.
К основным подходам машинного обучения можно отнести следующие:
контролируемое машинное обучение (обучение с учителем, supervised machine learning), когда алгоритм ИИ наблюдает набор размеченных данных и обучается функции, позволяющей предсказывать аннотацию для новых входных данных;
неконтролируемое машинное обучение (обучение без учителя, unsupervised machine learning), когда алгоритм распознает паттерны (структуру) в неразмеченных данных, выявляя скрытые закономерности.
Под разметкой данных (data labeling) понимается этап обработки структурированных и неструктурированных данных, в процессе которого данным (в том числе текстовым документам, фото- и видеоизображениям) присваиваются идентификаторы, отражающие их тип (классификация), и (или) осуществляется интерпретация данных для решения конкретной задачи.
Такие популярные алгоритмы глубокого обучения, как сверточные нейронные сети, глубокие сети доверия, рекуррентные нейронные сети и другие, лежат в основе услуг многих технологических гигантов.
В настоящее время перспективным направлением является построение алгоритмов ИИ на основе наиболее биологически достоверных моделей (выполнение нейроморфных вычислений, максимально приближенных к работе человеческого мозга). Спайковая нейронная сеть (spiking neural network, SNN) является одним из основных «кандидатов» для преодоления ограничений нейронных вычислений и эффективного использования алгоритма машинного обучения в реальных приложениях. Концепция вдохновлена механизмами взаимодействия между нейронами, основанными на передаче информации при помощи электрических импульсов, дискретных пространственно-временных сигналов (спайков). Спайковые нейронные сети построены на основе биологических методов обработки информации, где разреженные во времени асинхронные сигналы передаются и обрабатываются массово-параллельным образом. Они демонстрируют низкое энергопотребление и высокую скорость обработки информации [Taherkhani et al., 2020].
Принято также деление ИИ на слабый и сильный. Термин «сильный ИИ» впервые предложен в 1980 г. [Searle, 1980]. Теория сильного ИИ предполагает, что компьютеры могут становиться «разумными» в том смысле, в котором человеческий разум это разум. Сильный ИИ постоянно занимается самообучением, не уступает человеку по интеллектуальным способностям, обладает самосознанием, может обрабатывать чувственную информацию [Малышева, Касимов, 2016].
Слабый ИИ не обладает такими возможностями.
В настоящее время деление на сильный и слабый ИИ является в определенной мере теоретическим, так как существующие технологии ИИ пока достаточно узкие по сравнению с человеческим разумом.
В последние годы активно обсуждается концепция гибридного интеллекта как интеграция человеческих способностей (естественного интеллекта) и потенциала алгоритмов ИИ.
В РФ к технологиям ИИ, т. е. технологиям, основанным на использовании ИИ, отнесены [Указ, 2019]:
а) компьютерное зрение (CV) процесс получения компьютером информации и ее понимание из серии изображений или видео;
б) обработка естественного языка (NLP) извлечение данных из человеческой речи и принятие решений на основе этой информации;
в) распознавание и синтез речи;
г) интеллектуальная поддержка принятия решений;
д) перспективные методы ИИ.
При этом перспективными методами ИИ в настоящее время считаются методы, направленные на создание принципиально новой научно-технической продукции, в том числе в целях разработки универсального (сильного) ИИ. К перспективным методам ИИ относятся: автономное решение различных задач, автоматический дизайн физических объектов, автоматическое машинное обучение, алгоритмы решения задач на основе данных с частичной разметкой и (или) незначительных объемов данных, обработка информации на основе новых типов вычислительных систем, интерпретируемая обработка данных.
§ 2. История развития технологий искусственного интеллекта
Как технологическое явление ИИ берет свое начало в 1956 г., когда в Университете Дартмута (США) прошла рабочая конференция с участием таких ученых, как Джон Маккарти, Марвин Минский (Marvin Minsky), Клод Шеннон (Claude Shannon), Алан Тьюринг, которые были названы основателями сферы искусственного разума[2].
В последующие годы развитие ИИ неразрывно связано с созданием роботов. В 1966 г. в Стэнфордском научно-исследовательском институте был разработан Shakey «первый электронный человек», первый мобильный робот, способный интерпретировать инструкции. Вместо того чтобы выполнять одношаговые команды, Shakey мог обрабатывать более сложные инструкции и выполнять соответствующие действия. Создание Shakey стало важной вехой для робототехники и ИИ [Kaul et al., 2020].
На смену экспертным системам, описывающим алгоритм действий по выбору решения в зависимости от конкретных условий, пришло машинное обучение, благодаря которому информационные системы самостоятельно формируют правила и находят решение на основе анализа зависимостей, используя исходные наборы данных. Нахождение решений без предварительного составления человеком их возможного перечня позволило говорить о настоящем прорыве в развитии ИИ.