Как именно вода может попасть в монтажную пену? Во-первых, во время дождя, поэтому снаружи пену закрывают гидроизоляционным слоем. Во-вторых, в пене может конденсироваться влага, содержащаяся в воздухе, поток которого в зимнее время направлен из помещения на улицу (так как абсолютная влажность помещения зимой всегда выше, чем на улице). Чтобы существенно уменьшить этот эффект, изнутри пену закрывают пароизоляционным слоем. В-третьих, влага может попасть в пену из стены: если в ней есть микротрещины, то во время дождя влага из намокшей стены будет через эти микротрещины попадать в пену. Оконные компании обычно не занимаются восстановлением стеновых проемов, и даже если занимаются, то это не гарантирует отсутствие таких трещин, ведь они могут появиться во время эксплуатации здания. Впрочем, монтажная пена быстро высыхает в среднем за 4 дня, если ничто не препятствует ее высыханию. Поэтому наружный слой делают таким, чтобы он не «сопротивлялся» испарению влаги из пены, то есть имел низкое сопротивление паропроницанию. Согласно п. А.2.2 ГОСТ 309712012 необходимо, чтобы наружный слой имел значение сопротивления паропроницанию не более 0,25 Пам
2
Важно отметить, что сопротивление паропроницанию слоя материала прямо пропорционально толщине этого слоя (так как при увеличении толщины слоя парообразной влаге надо преодолеть большее расстояние). Поэтому изменяя толщину наружного слоя, можно получить выполнение условия «не более 0,25 Пам
2
2
Сопротивление паропроницанию слоя наружного герметика показывает, по сути, скорость высыхания монтажной пены, которую этот слой закрывает со стороны улицы. Значит, эту скорость высыхания и надо замерить. Мы подготовили несколько образцов монтажных пен, промочили их до максимального влагосодержания и поместили в пароизоляционные контуры. Первую группу образцов закрыли сверху слоем Стиз А (рис. 23).
Рисунок 23. Схема образца для испытаний
Вторую закрыли слоем конкурентного материала с максимально допустимой толщиной нанесения в 2,5 мм (назовем его для удобства
«строительным акрилом»), при этом наносили его тоже толщиной 5 мм. Третью группу образцов не стали ничем закрывать. Далее измеряли скорость высыхания образцов пены (табл. 3).
Таблица 3. Зависимость влагонакопления в монтажной пене от времени
Существенна ли полученная разница? Чтобы ответить на этот вопрос, построим графики (рис. 24) высыхания образцов пен и посмотрим, за какое время они высохнут до критического уровня влагосодержания, который был выбран нами равным 13%.
Рисунок 24. Зависимость влагосодержания в монтажной пене от времени
Мы видим, что оставленная открытой пена высыхает до критического уровня влагосодержания через 6,1 дня после начала испытаний. Пена, закрытая Стиз А через 9,4 дня, а пена, закрытая строительным акрилом через 15,6 дней. А что это означает для реальной эксплуатации герметиков? Рассмотрим такой случай: установлены окна, в стене есть микротрещины, в ноябре пошел дождь, и пена промокла. А через 1012 дней температура опустилась сильно ниже 0 °С. Тогда если пена была закрыта Стиз А проблем нет13. А если строительным акрилом то проблемы у жильцов будут, так как шов промерзнет. Вот такую разницу уже можно «пощупать». Добавим сюда разную долговечность герметика (у Стиз А она подтверждена, например, независимым испытанием в ГУП «НИИМосстрой», выполненным при условии свободной14 выборки образцов для испытаний) и получим ответ, почему Стиз А дороже обычных акрилов. Мы полагаем, что повышенная вероятность промерзания шва и его пониженная долговечность (а значит, и пониженный срок эксплуатации всего окна) не стоит экономии 2030 рублей на одном окне (то есть всего 0,20,3% от его стоимости при цене в 10 000 руб.). Поэтому мы никогда не производили и не будем производить более дешевые акрилы, не имеющие необходимые по ГОСТ 30971 долговечность и сопротивление паропроницанию на рабочей толщине слоя. И что-то нам подсказывает, что клиенты оконных компаний жильцы квартир и домов, в которых устанавливают окна эти компании согласились бы доплатить дополнительные 2030 рублей на окне, если бы поняли, за что именно они доплачивают.
Глава 8. Взаимосвязь толщины слоя нанесения герметика и показателя сопротивления паропроницанию
При установке оконного блока крайне важным этапом является обеспечение сопряжения окна со стеновым проемом. Действительно, в полученной конструкции этот элемент сопряжения, называемый монтажным швом, считается самой проблемной зоной: с ним связано до половины всех рекламаций по работе окна.
Вообще, ГОСТ 30971 «Швы монтажные узлов примыканий оконных блоков к стеновыми проемам» задает требования к различным элементам монтажного шва. В том числе и к наружному слою. Например, он должен быть водонепроницаемым при определенном давлении воды, иначе при сильном дожде под давлением ветра влага попадет внутрь шва. Еще он не должен препятствовать естественному движению пара изнутри наружу, а для этого материал наружного слоя должен быть паропроницаемым. Но в ГОСТ прописано требование не к материалу наружного слоя, а именно к самому слою: наружный слой должен иметь сопротивление паропроницанию не более 0,25 Пам
2
Примечания
1
Здесь и далее под трещинами мы понимаем полости в монтажной пене, схематичный вид которых представлен на рис. 3.
2
Описание всего эксперимента приводим в статье «Отчет о работе по сравнению воздухопроницаемости различных материалов», с которым можно ознакомиться у нас на сайте: https://www.sazi-group.ru/articles/airpermeability/.
3
Иногда герметики называют мастиками. Это неверно согласно классификатору ОК 0342014 (КПЕС 2008) это разные группы материалов, которые, наряду с замазками, шпатлевками, пастами и т.д., относятся к группе «Материалы лакокрасочные и аналогичные для нанесения покрытий прочие; сиккативы готовые».
4
Разумеется, в случае качественного монтажа. На практике же обычно не обращают внимание на такие «мелочи», жертвуя качеством монтажного шва.
5
Например, у ведущего на начало 2023 года производителя лент максимальный размер перекрываемого зазора 30 мм.
6
При этом в Технических условиях на Стиз А и Стиз В этого показателя нет. Вместо него мы контролируем долговечность герметика.
7
Вода при охлаждении от 3,71 °С до 0 °С увеличивается в своем объеме примерно на 10%.
8
Более правильно говорить о паропроницаемости герметика и сопротивлении паро- проницанию слоя из него. Подробнее этот вопрос рассмотрен в Главах 811.
9
Эта величина справедлива только для акриловых герметиков: именно их используют для монтажа окон в подавляющем большинстве случаев.
10
Отметим, что толщину герметика измеряют в области между порами.
11
Возможно, кто-то и потерю 3 °С посчитает слишком большой, поэтому для него критический уровень влагосодержания будет меньше, чем 13%.
12
Как мы покажем в Главе 10, прямо пропорциональная связь между сопротивлением паропроницанию и толщиной слоя вопрос неоднозначный. Так что скорее всего здесь не 2,5 мм, а около 1 мм.
13
Очевидно, что с этой точки зрения пену вообще лучше ничем не закрывать снаружи. Но так, разумеется, нельзя: она будет намокать во время дождя и разрушаться под действием солнечного света.
14
Свободная выборка образцов выполняется представителем испытательного центра непосредственно на складе готовой продукции производственного предприятия, что исключает возможность передачи на испытания несерийных образцов, специально подготовленных для прохождения испытания.