ИВВ - Максимизируйте эффективность машинного обучения. Полное руководство по информационной системе стр 6.

Шрифт
Фон

Обучение алгоритмов на большом объеме данных часто включает следующие шаги:


1. Предобработка данных: перед началом обучения необходимо предобработать данные.


В процессе предобработки данных необходимо выполнить следующие шаги:


1.1. Удаление выбросов: Выбросы  это экстремальные значения, которые сильно отличаются от остальных данных. Они могут искажать обучение модели и влиять на точность предсказаний. Удаление выбросов может быть выполнено путем нахождения значений, выходящих за пределы определенного порога или на основе стандартного отклонения данных.


1.2. Обработка пропущенных значений: Пропущенные значения в данных могут возникнуть из-за ошибок в сборе данных или отсутствия информации. Обработка пропущенных значений включает такие методы, как удаление записей с пропущенными значениями, заполнение пропущенных значений средними или медианами, использование методов машинного обучения для предсказания пропущенных значений или использование специальных методов, таких как множественная импьютация.


1.3. Нормализация признаков: Некоторые алгоритмы машинного обучения могут быть чувствительны к несбалансированным или различающимся по масштабу признакам. Нормализация признаков позволяет привести их значения к определенному интервалу или стандартному распределению. Популярными методами нормализации являются масштабирование на интервал [0,1], стандартизация с нулевым средним и единичной дисперсией или нормализация по Z-оценке.


1.4. Преобразование категориальных признаков в числовые: некоторые алгоритмы машинного обучения требуют числовых данных. Если у вас есть категориальные признаки, такие как «пол» или «страна», их можно преобразовать в числовые признаки, используя методы, такие как кодирование меток или кодирование с одним активным состоянием (one-hot encoding).


1.5. Разбиение данных на обучающую, проверочную и тестовую выборки: для оценки качества модели необходимо разделить данные на независимые наборы. Обучающая выборка используется для обучения модели, проверочная  для настройки гиперпараметров и выбора лучшей модели, а тестовая выборка  для оценки качества предсказаний на неизвестных данных. Разбиение данных может быть выполнено случайным образом или с использованием временных разделителей, в зависимости от типа данных и целей анализа.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3