1. Здравоохранение: ИИ используется для помощи в диагностике заболеваний, предсказания их развития и подбора подходящего лечения. С помощью анализа больших объемов данных, ИИ может определить шаблоны и корреляции, которые могут быть невидимы для человеческого врача.
2. Финансы: ИИ используется для автоматизации и улучшения финансового анализа, прогнозирования рынка, выявления мошенничества с кредитными картами и автоматического советника для инвестиций.
3. Образование: ИИ может помочь в создании индивидуальных учебных планов, автоматизировать оценку работ студентов и обеспечить интерактивное обучение с использованием технологий виртуальной и дополненной реальности.
4. Транспорт: В автономных автомобилях и беспилотных летательных аппаратах используется ИИ для навигации, обнаружения препятствий и принятия решений на дороге.
5. Маркетинг и реклама: ИИ помогает компаниям анализировать поведение покупателей, прогнозировать тренды продаж, персонализировать рекламу и создавать более точные стратегии продаж.
6. Энергетика: ИИ используется для прогнозирования потребности в энергии, оптимизации использования ресурсов и поддержания стабильности работы инженерных систем и энергосетей.
7. Сельское хозяйство: ИИ помогает в автоматизации ухода за урожаем, прогнозировании погоды, мониторинге состояния почвы и растений, в логистике и управлением поставками.
8. Развлечения и игры: ИИ используется в видеоиграх для создания сложного и реалистичного поведения персонажей, а также в фильмах и анимации для создания сложных визуальных эффектов.
9. Юриспруденция: ИИ может помочь в анализе и сортировке юридических документов, поиске прецедентов и предсказании результатов судебных дел.
10. Производство: ИИ помогает в автоматизации производственных процессов, управлении поставками, предсказании неисправностей оборудования и оптимизации рабочего процесса.
Это только некоторые из множества применений ИИ. Ключевым моментом является то, что AI может привести к значительным улучшениям в любой области, где требуется анализ больших объемов данных или автоматизация сложных задач с большим количеством параметров.
Особую роль ИИ-технологии получили в развитии современных информационных систем, интернет-проектах и веб-сервисах. Они используют Искусственный Интеллект для улучшения параметров и показателей работы, улучшения пользовательского опыта, оптимизации бизнес-процессов. Вот некоторые примеры такого использования:
1. Поисковые системы: Искусственный интеллект используется для улучшения релевантности результатов поиска, прогнозирования поисковых запросов пользователей и улучшения понимания контекста запросов.
2. Рекомендательные системы: ИИ используется в интернет-магазинах, музыкальных и видео-стриминговых сервисах для предложения пользователю товаров или контента, который может быть для него интересным на основе его предыдущих действий или предпочтений.
3. Обработка естественного языка (NLP): Используется для создания чат-ботов и виртуальных помощников, которые могут общаться с пользователями на естественном языке, понимая и отвечая на запросы.
4. Распознавание и анализ изображений: Используется для автоматической категоризации и тегирования изображений в социальных сетях, распознавания лиц, объектов или мест на фотографиях, а также для модерации контента.
5. Системы управления контентом: ИИ может помочь автоматизировать процесс создания и публикации контента, например, генерируя тексты или подбирая оптимальное содержание и время для публикации постов.
6. Интернет-реклама: ИИ позволяет более точно таргетировать рекламные объявления, анализировать их эффективность и автоматически оптимизировать рекламные кампании.
7. Безопасность и защита данных: Искусственный интеллект может помочь в обнаружении и предотвращении мошеннических действий, а также в анализе и прогнозировании угроз безопасности.
8. Пользовательский опыт (UX): ИИ может использоваться для персонализации пользовательского опыта, адаптируя интерфейс и функциональность сервиса под предпочтения и поведение пользовательского сегмента или конкретного пользователя.
9. Социальные сети: ИИ используется для фильтрации и организации ленты новостей, автоматического тегирования людей на фотографиях, распознавания и перевода текста, а также анализа поведения пользователей для выявления тенденций и паттернов.
10. Системы аналитики: ИИ может помочь в анализе больших объемов данных, детекции отклонений, выявлении важных инсайтов и прогнозировании будущих тенденций.
Таким образом, применение ИИ в веб-сервисах и системах крайне широко и продолжает расти с развитием технологий и увеличением объемов данных.
5. Будет ли следующая «Зима ИИ» после текущего (третьего) возрождения ИИ и бума Генеративного ИИ?
Вопрос о том, будет ли следующая «Зима ИИ» после текущего возрождения, является предметом активного обсуждения среди ученых и специалистов в области ИИ. Ответ на него во многом зависит от того, как будут развиваться технологии, какое влияние они окажут на общество, какие решения сообщество найдет для возможных проблем и задач на этом пути.
Потенциальные сложности и проблемы можно разделить на следующие большие группы:
Оправдание стоимости и затрат на развитие ИИ.
Первая группа вопросов связана с огромными затратами на обучение и поддержку работы новых передовых нейросетей. Содержание дата-центров для крупных ИИ-проектов обходится в десятки и сотни миллионов долларов. И инвесторы ожидают, что вложенные средства должны окупиться.
Но так как общество видит взрывной рост возможностей нового Генеративного ИИ и созданных на его базе приложений и сервисов, то многие компании готовы выделять финансы и ресурсы, чтобы первыми реализовать эти возможности. Частные и корпоративные инвесторы активно инвестируют в стартапы и технологии, связанные с созданием нейросетей нового поколения. Во многих странах можно наблюдать активное сотрудничество государства, крупных компаний, стартапов и научных центров.
Кроме этого, на рынке появляется все больше открытых (opensource) технологий аналогов, которые получают развитие от всей экосистемы и сообщества разработчиков. Скорость создания таких открытых технологий и продуктов у экосистемы часто превышают каждую конкретную отдельную компанию (даже лидеров индустрии), а также ведет к снижению стоимости и доступности новых технологий в целом.
Усвоение новых технологий обществом.
ИИ уже применяется во многих областях, от автомобилей до здравоохранения, и его потенциал кажется огромным и только начинающим раскрываться. Но при этом прогресс и скорость развития новых ИИ-систем такой большой, что мы не успеваем усваивать и внедрять новые возможности, которые они нам дают.
И дальше эта скорость развития технологий будет еще выше, а обществу будет все сложнее их внедрять и изменять под них существующие системы и процессы. Это может вызвать неконтролируемые негативные эффекты, связанные с неравномерным распределением технологий и стать возможной причиной новых социальных проблем.
Вопросы этики и безопасности ИИ-технологий.
ИИ это набор очень мощных технологий, которые способны принести не только положительные изменения, но и стать причиной возможных проблем: предвзятости и неравенства, конфиденциальности и безопасности, свободы слова и демократических институтов. Кроме этого, возможно использование ИИ людьми в военных и преступных целях.