ИВВ - Квантовая физика и формула F = λh/P. Открытия, применения и практические расчеты стр 2.

Шрифт
Фон

Если мы знаем массу частицы и ее скорость (или импульс) в системе, мы можем рассчитать длину волны, используя формулу де Бройля. Обратно, зная длину волны частицы, мы можем найти ее энергию системы.


Эта связь между длиной волны и энергией системы является фундаментальным результатом квантовой физики и демонстрирует дуализм частиц, который состоит в том, что частицы могут обладать как частицеподобными, так и волновыми свойствами. Длина волны частицы позволяет нам описывать ее волновые свойства и предсказывать ее поведение на микроуровне.

Примеры и расчеты

Рассмотрим несколько примеров расчетов, связанных с длиной волны частицы и ее связью с энергией системы.


Пример 1: Расчет длины волны фотона с известной энергией


Пусть у нас есть фотон с энергией E = 3 электрон-вольта (эВ). Чтобы рассчитать его длину волны, используем формулу де Бройля: λ = h / p.

Для фотона, у которого нет массы (m = 0), импульс p можно выразить через энергию: p = E / c, где c  скорость света.

Подставляем в формулу: λ = h / (E / c).

Теперь подставим значения: h = 6,62607015 × 10^-34 Дж·с (постоянная Планка), c = 299 792 458 м/с (скорость света), E = 3 эВ = 3,2 × 10^-19 Дж.

Получаем: λ = (6,62607015 × 10^-34 Дж·с) / ((3,2 × 10^-19 Дж) / (299 792 458 м/с)) = 6,209 × 10^-7 м.


Фотон с энергией 3 эВ имеет длину волны около 620 нм.


Пример 2: Расчет энергии частицы с известной длиной волны


Рассмотрим электрон с известной длиной волны λ = 0,1 нм. Чтобы рассчитать его энергию, снова используем формулу де Бройля: λ = h / p.

В данном случае, учитывая, что у электрона есть масса, используем классическую формулу импульса: p = mv, где m  масса электрона, v  его скорость.

Подставляем в формулу: λ = h / (mv).

Разрешим эту формулу относительно энергии E: E = p^2 / (2m).

Теперь подставляем значение длины волны и известные физические константы.

Получаем: E = (h^2) / (2m (λ^2)).

Подставляем значения: h = 6,62607015 × 10^-34 Дж·с (постоянная Планка), m = 9,10938356 × 10^-31 кг (масса электрона), λ = 0,1 нм = 1 × 10^-10 м.

Получаем: E = ((6,62607015 × 10^-34 Дж·с) ^2) / (2 × (9,10938356 × 10^-31 кг) × ((1 × 10^-10 м) ^2)) = 2,734 × 10^-15 Дж.


Электрон с длиной волны 0,1 нм имеет энергию около 2,734 × 10^-15 Дж.


Эти примеры демонстрируют, как мы можем использовать формулу де Бройля, чтобы рассчитать длину волны или энергию частицы. Зная либо длину волны, либо энергию, мы можем легко перейти от одной величины к другой, используя формулу де Бройля и известные физические константы, такие как постоянная Планка и скорость света.

Постоянная Планка и ее роль

Обзор истории открытия постоянной Планка

История открытия постоянной Планка связана с развитием квантовой физики и началась в конце XIX  начале XX века. В этот период физики столкнулись с некоторыми противоречиями, которые нельзя было объяснить классической физикой.


Одно из этих противоречий проявилось при изучении излучения черных тел. Согласно классической физике, ожидалось, что высокочастотное излучение будет иметь неограниченное количество энергии. Однако эксперименты показывали, что в определенном диапазоне частот энергия излучения оказывается ограниченной.


В 1900 году немецкий физик Макс Планк предложил новую гипотезу, которая была основой для дальнейшего развития квантовой физики. Он предположил, что излучение энергии не происходит непрерывно, а имеет дискретный характер, состоящий из множества энергетических квантов.


Чтобы описать это явление, Планк ввел постоянную, которая затем была названа его именем  постоянную Планка (обозначается символом h). Она является фундаментальной константой и определяет соотношение между энергией излучения и его частотой по формуле E = hν, где E  энергия, ν  частота излучения.


Открытие постоянной Планка сделало возможным объяснение ограниченности энергии излучения черных тел и стало отправной точкой для развития квантовой механики. Эта константа была одним из ключевых шагов в понимании микромира и принципов квантовой физики.

Квантовая физика и формула F = λh/P. Открытия, применения и практические расчеты

читать Квантовая физика и формула F = λh/P. Открытия, применения и практические расчеты
ИВВ
В данной книге «Квантовая физика и формула F = λh/P: открытия, применения и практические расчеты» представлен мир квантовой физики с помощью формулы F = λh/P. Эта формула связывает энергию, длину волны и постоянную Планка, играя важную роль в исследованиях квантовых систем. Расчеты и примеры позволя
Можно купить 280Р
Купить полную версию

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3