Позиционная система счисления царя Шульги была шестидесятеричной, а не десятичной. Сложно сказать, почему именно такая техника записи чисел обрела в древности такую популярность. Одни историки математики видят причину в том, что число 60 дает целые частные при делении на любое из целых чисел с 1 до 6 (и еще на шесть чисел). Благодаря этому с ним легко работать, особенно при делении товаров, цен и мер. Другие предполагают, что удобство шестидесятеричной системы объясняется примерным числом дней в году. Какой бы ни была причина, эта система оставила наследие: именно в ближневосточных царствах, которые в итоге образовали Вавилон, круг разделили на 360 градусов, градус и час на 60 минут, а минуту на 60 секунд.
Вавилонская шестидесятеричная система похожа на нашу десятичную: например, число 34 в ней записывается тремя символами, обозначающими десятки, и четырьмя символами, обозначающими единицы. Но условных знаков в ней хватает лишь для записи чисел до 59, поэтому десятичное число 424 000 в шестидесятеричной системе состояло бы из сорока единиц, 46 групп по шестьдесят, 57 групп по шестьдесят на шестьдесят (60
2
3
Такая запись (как и наша) удобна, пока в числе нет отсутствующих групп. Но как же записать в десятичной системе число 4005, в котором нет ни сотен, ни десятков? Нам нужно было найти способ обозначать отсутствие при записи числа. Так мы и начали использовать знак, который сегодня называем нулем.
Нулем он был не всегда. В этой истории много белых пятен, но, судя по всему, в Вавилоне пустая позиция обозначалась наклонным клинописным символом (хотя даже это оспаривается)[26]. Майя и инки также обозначали пустую позицию абстрактным символом или глифом. Ни один из этих символов, однако, не был знакомым нам нулем, который, как считается, пришел к нам из Индии, где точкой шуньей обозначалась пустота. Самый ранний из известных нам документов, в которых этой круглой заглушкой обозначаются пустые позиции, манускрипт Бакхшали, индийский текст, написанный на 70 листах бересты. Он датируется 224383 годами нашей эры и, возможно, служил учебным пособием для буддийских монахов. Но шунья не сразу стала математическим нулем. В написанном в 628 году трактате Брахмагупты, где признается существование отрицательных чисел, также впервые используется ноль в этом случае индийская шунья, который обозначает не просто пробел. Он входит в числовую последовательность и сам по себе считается величиной, которая подчиняется тем же законам арифметики, что и другие величины. Брахмагупта объясняет, как ноль взаимодействует с другими числами, как положительными, так и отрицательными:
Долг минус ноль это долг.
Достаток минус ноль это достаток.
Ноль минус ноль это ноль.
Ноль минус долг это достаток.
Ноль минус достаток это долг.
При умножении нуля на долг или достаток получается ноль.
При умножении нуля на ноль получается ноль.
Запад с нулем познакомил персидский математик и астроном X века Мухаммад ибн Муса аль-Хорезми. В своих книгах он использовал цифры, которые теперь называются арабскими или индо-арабскими, и включал в их число ноль, подчеркивая его значимость для позиционной системы счисления. Он называл его сифр, что в переводе значит пустой. В латыни это слово превратилось в zephyrum, и от него итальянцы образовали слово zero, то есть ноль.
Но аль-Хорезми использовал ноль не только для записи чисел. Как и Брахмагупта, он применял его в качестве алгебраического инструмента, тем самым закрепляя его значимость при проведении манипуляций с числами, и называл его десятой цифрой с форме круга. Аль-Хорезми явно считал ноль одной из цифр, и ноль играет ключевую роль в его Краткой книге о восполнении и противопоставлении. Именно от его арабского названия Китаб аль-джебр ва-ль-мукабала произошло слово алгебра, а слово алгоритм стало производным от имени автора: аль-Хорезми, несомненно, оказался весьма влиятелен. Он считал, что пользоваться его трактатом сможет кто угодно, ведь в нем содержались числовые инструменты, применимые при дележе наследств, составлении завещаний, разделе имущества и судебных делах, в торговле и всевозможных сделках, а также при измерении земель, проведении каналов, строительстве и прочих разновидностях подобных дел[27]. Однако, несмотря на широкий спектр возможных применений, западные умы не спешили принимать концепцию нуля.
Сегодня ноль кажется нам настолько очевидным и знакомым инструментом, что сложно представить себе системы счисления, которые обходились бы без него. Когда в X веке французский монах Герберт Орильякский прибыл в Испанию, чтобы изучить исламскую математику, он познакомился с нулем, но оставил его без внимания. Герберт оценил математические идеи аль-Хорезми и распространил многие из них среди европейских купцов. И все же ноль он в Европу не принес, а предпочел вместо этого научить людей искусству счета на абаке.
Даже через двести лет после путешествия Герберта ноль все еще не принимали: считается, что английский историк Вильям Мальмсберийский называл его опасным сарацинским колдовством[28]. И даже когда Фибоначчи продемонстрировал европейцам силу нуля, он все же поостерегся включать его в числовой ряд. В Книге абака Фибоначчи пишет: Индийских цифр девять: 9 8 7 6 5 4 3 2 1. С помощью этих девяти цифр и знака 0 можно записать любое число. Он называет ноль знаком, и это свидетельствует, что он, в отличие от аль-Хорезми, пока не решался включить его в число цифр.
Сложно сказать, почему именно. Отчасти из-за неприятия идеи о том, что отсутствие чего-либо можно рассматривать аналогично присутствию. В математической философии Древней Греции отрицательным числам не находилось места среди священных целых положительных чисел, и точно так же она не терпела попытки превратить ничто в какую-то сущность, заслуживающую внимания. Аристотель в своем трактате Физика отметил, что невозможно осуществлять осмысленное деление на ноль, а следовательно, ноль нельзя считать числом[29]. Но важнее, пожалуй, то, что нулю не находилось места на абаке главном счетном инструменте образованной публики в средневековой Европе.
Абак не всегда был таким, каким мы представляем его сейчас: с бусинами или камушками, нанизанными на нитки. Считается, что его название произошло от древних ближневосточных слов пыль и доска, и можно предположить, что изначально на плоской поверхности рассыпали пыль, на которой затем писали пальцем или раскладывали камни, а после этого стирали написанное и начинали счет заново.
Устройство абака позволяет обходиться без нуля. Видя ровные ряды камней или отметок, человек мгновенно получает позиционную информацию, не нуждаясь в специальном знаке для обозначения пустого разряда. Освоив все алгоритмы работы с абаком, он, конечно, уже не захочет разбираться в новомодном способе записи чисел.
Раньше умение считать на абаке было весьма востребованным навыком. В нем было даже нечто соблазнительное. При работе над Рассказом мельника, который входит в сборник Кентерберийские рассказы, Джеффри Чосер постарался сделать главного героя беззастенчивым (во всех смыслах) интеллектуалом. У Душки Николаса были астролябия для проведения астрономических измерений и греческий учебник, которым он руководствовался при работе. Чосер отмечает, что у изголовья его кровати стояли счеты с приведенными в порядок костяшками: он всегда был готов приступить к расчетам. По сути, он был занудой. При этом он сумел наставить рога богатому, но заурядному плотнику, у которого снимал комнату, и по меркам современной культуры это весьма неожиданный поворот. Но в Рассказе мельника Чосер делает Николаса неотразимым в глазах прекрасной молодой жены плотника.