ИВВ - Эврика-граф: сферы телекоммуникаций и ИТ-инфраструктур. Оптимизация энергетических систем стр 2.

Шрифт
Фон

Шаг 2: Наращивание длины найденного пути


После инициализации и выбора начальной и конечной вершин, алгоритм Дейкстры начинает наращивать длину найденного пути от начальной вершины к остальным вершинам графа.


Алгоритм проходит через следующие шаги:


1. Выбор текущей вершины: Алгоритм выбирает вершину с наименьшим расстоянием из непосещенных вершин. Начально, это будет начальная вершина.

2. Рассмотрение соседних вершин: Алгоритм рассматривает все соседние вершины текущей вершины, то есть те вершины, с которыми текущая вершина соединена ребрами.

3. Обновление расстояний: Для каждой соседней вершины, алгоритм проверяет, если сумма расстояния от начальной вершины до текущей вершины и веса ребра, соединяющего текущую и соседнюю вершины, меньше текущего расстояния до соседней вершины. Если это так, то расстояние до соседней вершины обновляется на новую, меньшую длину пути.

4. Пометка посещенной вершины: После обновления расстояний до всех соседних вершин, текущая вершина помечается как посещенная.

5. Шаги 14 повторяются: Алгоритм повторяет эти шаги, выбирая новую текущую вершину с наименьшим расстоянием среди непосещенных вершин, и обновляя расстояния до соседних вершин, пока все вершины не будут посещены.


Этот процесс продолжается до тех пор, пока алгоритм не посетит все вершины графа и не найдет оптимальный путь от начальной вершины до всех остальных вершин.


Когда алгоритм завершается, будет найден кратчайший путь от начальной вершины до каждой другой вершины в графе Eureka-graph, и они будут сохранены в соответствующих переменных или структурах данных, которые можно использовать для восстановления полного пути от начальной вершины до конечной.

Процесс нахождения кратчайшего пути

Применение алгоритма Дейкстры

Шаг 2: Применение алгоритма Дейкстры


Применение алгоритма Дейкстры в Eureka-graph осуществляется с целью нахождения кратчайшего пути между двумя вершинами, учитывая веса ребер. Этот алгоритм является одним из основных и наиболее эффективных способов решения задачи поиска оптимального пути в графе.


Процесс применения алгоритма Дейкстры выглядит следующим образом:

Эврика-граф: сферы телекоммуникаций и ИТ-инфраструктур. Оптимизация энергетических систем

читать Эврика-граф: сферы телекоммуникаций и ИТ-инфраструктур. Оптимизация энергетических систем
ИВВ
Книге вы узнаете об удивительной формуле «Эврикаграф». Она позволяет анализировать и работать с графовыми структурами, находить кратчайшие пути и строить минимальные остовные деревья. Рассмотрены различные алгоритмы и методы, позволяющие эффективно использовать формулу в разных областях. Отправляйте
Можно купить 280Р
Купить полную версию

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3