8. Mukhin, K. N. Experimental nuclear physics. Vol. 1. Physics of the atomic nucleus: Textbook / K. N. Mukhin. SPb.: Lan, 2009. 384 p.
9. Mukhin, K. N. Experimental nuclear Physics. Vol. 1. Physics of the atomic nucleus: Textbook / K. N. Mukhin. St. Petersburg: Lan, 2008. 384 p.
10. Mukhin, K. N. Experimental nuclear physics. Vol. 2. Physics of nuclear reactions: Textbook / K. N. Mukhin. St. Petersburg: Lan, 2009. 326 p.
11. Mukhin, K. N. Experimental nuclear physics. Vol. 2. Physics of nuclear reactions: Textbook / K. N. Mukhin. St. Petersburg: Lan, 2008. 336 p.
12. Rakobolskaya, I. V. Nuclear physics / I. V. Rakobolskaya. M.: Krasand, 2014. 248 p.
13. Sivukhin, D. V. General course of physics Vol.5. Atomic and nuclear physics: Textbook / D. V. Sivukhin. M.: Fizmatlit, 2008. 784 p.
14. Sivukhin, D. V. General course of physics Vol.5 Atomic and nuclear physics: Textbook 5 vol. / D. V. Sivukhin. M.: Fizmatlit, 2008. 784 p.
15. Sivukhin, D. V. General course of physics Volume 5 Atomic and nuclear physics: Textbook / D. V. Sivukhin. M.: Fizmatlit, 2008. 784 p.
16. Sivukhin, D. V. General course of physics. In 5 vols. 5. Atomic and nuclear physics, ster / D. V. Sivukhin. M.: Fizmatlit, 2008. 784 p.
17. Sivukhin, D. V. General course of physics. 5. Atomic and nuclear physics: A textbook for universities / D. V. Sivukhin. M.: FIZMATLIT, 2008. 784 p.
18. Sivukhin, D. V. General course of physics: Textbook: for universities in 5 volumes. Volume 5. Atomic and nuclear physics / D. V. Sivukhin. M.: Fizmatlit, 2008. 784 p.
19. Strelkov, S. P. Workshop on solving problems in the general course of physics. Fundamentals of quantum physics. The structure of matter. Atomic and nuclear physics: Textbook / S. P. Strelkov, D. V. Sivukhin, V. A. Ugarov. St. Petersburg: Lan, 2014. 240 p.
20. Tarasov, L. M. Experimental nuclear physics. Vol. 2. Physics of nuclear reactions: Textbook / L. M. Tarasov, I. G. Konstantinova. SPb.: Lan P, 2016. 326 p.
21. Tarnaeva, L., P. Experimental nuclear Physics. Vol. 1. Physics of the atomic nucleus: Textbook / L. P. Tarnaeva. St. Petersburg: Lan P, 2016. 384 p.
22. Tartynov, G. N. Experimental nuclear physics. Vol. 3. Physics of elementary particles: Textbook of KPT / G. N. Tartynov. St. Petersburg: Lan KPT, 2016. 432 p.
USAGE PARAMETERS AND A PARTICULAR DESCRIPTION OF THE PROCESS OF CREATING PHOTOVOLTAIC DEVICES BASED ON CADMIUM TELLURIDE
UDC 621.383
Mavlonov Paxlavon Ibrohimovich
Senior Lecturer of the Department of "Natural Sciences" of the Faculty of Computer Engineering of the Ferghana branch of the Tashkent University of Information Technologies
Ferghana Branch of Tashkent University of Information Technologies, Ferghana, Uzbekistan
Annotation. Activity in the field of the use of semiconductor materials in the field of energy technologies today opens up a large number of opportunities, which indicates the need for further more active development and use. In addition, it is also worth paying attention to the use of a large number of different materials, among which individual representatives may stand out, dramatically increasing the overall efficiency of the entire semiconductor structure and are currently in greater priority for such a measurement in the face of binary, ternary, etc. chemical compounds.
Keywords: cadmium telluride, semiconductor elements, photovoltaic devices, efficiency, production technology, industrialization.
Аннотация. Активность в области использования полупроводниковых материалов в области энергетических технологий на сегодняшний день открывает большое количество возможностей, что говорит о необходимости дальнейшего более активного развития и использования. Кроме того, стоит также обращать внимание и на применение большого количества различных материалов среди коих могут выделяться отдельные представители, резко повышающие общую эффективность всей полупроводниковой конструкции и находящиеся на данный момент в большем приоритете по подобному измерению в лице бинарных, тернарных и т. д. химический соединений.
Ключевые слова: теллурид кадмия, полупроводниковые элементы, фотоэлектрические устройства, эффективность, технология производства, индустриализация.
Photovoltaic cells, as is known, based on the method of generating electrical energy due to the low energy that must be applied in the face of a particular radiation, operate according to the laws of photovoltaic phenomena (partial equations) (12).
And before giving some conclusions about this or that element, which is recognized as the main one for the semiconductor element being created, it is worth considering this chemical compound according to its various parameters. In this case, the role of such a compound is played by cadmium telluride (Fig. 1), which is a binary compound of cadmium and tellurium, and is also considered a semiconductor of the 2-a and 6-b groups with a band gap at temperatures of 300 K at 1.49 eV.
Fig. 1. Cadmium telluride crystal
The use of this element is really popular at the moment when creating solar panels, ionizing radiation detectors and photodetectors, but the mathematical basis of these phenomena still requires consideration. This material, in its normal state, is solid with a molar mass of 240.01 g / mol and a density of 5.85 g / cm3, has a melting point of 1092 degrees Celsius after its formation with a cubic structure or a sphalerite structure, also popularly popular as zinc blende.
In the formed material, the coefficient of linear thermal expansion is 5,9*106 1/ K when the temperature value reaches 293 K. The Youngs modulus of such a material reaches 52 Gpa with a Poissons ratio of 0.41. Another, for some cases, favorable moments is the circumstance of its transparency for infrared radiation from 830 nm, but negative if it is necessary to detect such classes of radiation. It should be noted that this radiation depends on an energy close to the band gap of the material of 1.5 eV at 300 K, which causes its transparency for this kind of radiation corresponding to 20 microns.
Fig. 2. Shift of fluorescence spectra in cadmium telluride
This element also has the property of fluorescence, but reaches its peak only at 790 nm. This law is effective only for massive crystals, but when their size decreases comparatively and can reach the state of reduction to quantum dots, the peak of fluorescence begins to shift by a certain value, being already in the ultraviolet range. Most of all, this dependence is personified by the fluorescence spectrum of cadmium telluride for various sizes, where the size of colloidal particles increases from about 2 to 20 nm, and some quantum well appears in the face of the reason for this peak shift (Fig. 2).
Among the chemical properties of this compound, it is not worth saying quite a lot and it is quite enough to note that it is bad it dissolves in water, has the property of interacting even with weak acids with the release of hydrogen telluride and the formation of the corresponding salt, which is quite obvious.
Based on all the presented physico-chemical descriptions of this compound, as well as finding compliance with the physico-mathematical laws of photovoltaic phenomena, it is possible in a comparative analysis to talk about the very favorable suitability of this material for the role of a semiconductor photovoltaic base for such devices with relatively high efficiency. But it is worth saying that further improvement of this technology is inevitable and requires more detailed further consideration.
Used literature
1. Bovin L. A and others . Physics of compounds a-2 b-6 / edited by A. N. Georgobiani, M. K. Sheinkman. M.: Nauka, Gl. ed. Phys.-mat. Lit., 1986. 319 p.