Всего за 404 руб. Купить полную версию
«Поиски происхождения ядерных сил приводят к новым частицам; но все эти открытия вызывают только замешательство. У нас нет полного понимания их взаимных отношений, хотя в некоторых поразительных связях между ними мы уже убедились» [11, с. 55].
Р. Фейнман«В 1927 году Нильс Бор, один из величайших мыслителей в области атомной физики, ввел в атомную физику так называемый принцип дополнительности, который был равнозначен отречению от попыток интерпретировать атомную теорию как описание чего-либо реального Я не верю, что физики приняли бы такой принцип ad hoc, если бы понимали, что он является таковым или же представляет собой философский принцип часть инструменталистской философии физики Беллармино и Беркли» [12].
К. Р. ПопперСила магнитного поля характеризуется плотностью силовых линий, т. е. их числом на единицу площади. Магнитное поле в любой точке пространства можно представить вектором В, называемым магнитной индукцией. Его величину можно определить через вращающий момент, действующий на магнитную стрелку, когда она не ориентирована вдоль магнитной силовой линии. Чем больше момент, тем сильнее магнитное поле. Магнитная стрелка находиться в равновесном состоянии, когда располагается по касательной к силовой линии в данном месте поля. Физическая сущность магнитного поля, как и электрического поля, остается до сих пор неизвестной. Вектор индукции (В) определяется опытным путем. Физиками не разработана теория взаимодействия постоянных магнитов и нет экспериментальных данных по этому взаимодействию. Эффективность от проведенных экспериментов низка, поскольку не создана теория (инструменты), позволяющая анализировать их результаты.
На современном этапе развития не до конца изучено строение атома, не выстроена цельная теория ядерных взаимодействий. Наука не научились понимать законы, господствующие во Вселенной. Мы не знаем причину движения планет, звезд и галактик. Природа упорно отказывается дать ответ о причине, побуждающей Землю двигаться вокруг Солнца. Не удается доказать инструментально и вращение планеты вокруг своей оси. Примечательны в этом отношении результаты экспериментов Майкельсона, а позже и Майкельсона Морли, в которых скорость распространения света по направлению движения Земли сравнивали со скоростью света перпендикулярно к этому движению. В этих опытах был применен чувствительный метод измерения. Влияние движения Земли должно было отчетливо проявиться. Но ожидаемый результат не был достигнут, оказался затруднительным и даже загадочным для теоретической физики.
Не существует ли каких-либо принципиальных оснований, вследствие которых потерпели неудачу все опыты, относившиеся к механическим свойствам эфира? У М. Планка возникла мысль, нельзя ли подойти к вопросу о световом эфире с совершенно другой стороны: «Что, если световые волны распространяются в пространстве, совершенно не связанные с каким-либо материальным носителем? В таком случае скорость движения тела по отношению к эфиру была бы немыслима» [13]. Один человек мог кардинально изменить историю развития естествознания и вывести его на новый уровень, однако не случилось. Опытным путем не удалось обнаружить эфир. Планк отказывается поддерживать его присутствие в пространстве. Он предложил использовать «уравнения МаксвеллаГерца для электродинамических явлений в свободном эфире или, скажем мы лучше, в пустом пространстве». Отступая от испытанного годами теоретического знания, физик-теоретик опрометчиво называет пространство «простейшей из всех сред, какую только можно себе представить», представляя его пустым.
В списке особенно важных и интересных проблем физики академик В. Л. Гинзбург выделил три «великие» проблемы, в их числе интерпретация и понимание квантовой механики. Он думает, что обсуждение основ нерелятивистской квантовой механики сохраняет известную актуальность и этим не следует пренебрегать. Значительная, если не подавляющая часть критиков квантовой механики не удовлетворена вероятностным характером части ее предсказаний. При анализе микроявлений они желают вернуться к классическому детерминизму и узнать, куда именно попадает каждый электрон в известных дифракционных опытах. Естественно желание исследователей объяснить все живое на основе уже известной физики. Гинзбург говорит [14], что переход от молекул и их комплексов к простейшим организмам, их воспроизводству можно себе представить. Но здесь имеется какой-то фазовый переход. Проблема не решена. Отправным пунктом гипотезы служит постоянство величины скорости света (с) в вакууме. Все опыты проводились в пределах Земли.
Многие теории опираются на движение планет, звезд и галактик в системе Вселенной. Космические тела, под действием сил тяготения, совершают свой ход миллиарды лет по одной и той же орбите. Насколько реалистичны постулаты, признанные научным миром? Никто же не предполагает, что в ядре универсума работает «perpetuum mobile». Чтобы заставить космические тела совершать орбитальные и вращательные движения, мирозданию потребуется невообразимый источник энергии. Небесная механика рассматривает движение материальных тел в пустоте. Предположим, что между звездами и планетами пустой космос. В данном случае перед физиками возникает ряд сложных вопросов. Какая сила удерживает орбиты космических объектов в одних и тех же точках пространства? Современная теория тяготения не может дать разумное объяснение устойчивому положению массивного тела в плоскости эклиптики и отсутствию действия силы тяжести в других направлениях. Закрадываются сомнения в достоверности действующих положений современной теории о движении звездных систем в мироздании. Будет большой скандал, если выяснится, что на протяжении сотен лет научная парадигма, принятая за основу ошибочна. В данный момент времени в разоблачение трудно поверить, но вероятность события не так мала, как может кому-то показаться сейчас.
От ложных законов естествознания отходят вторичные законы, которые подобно кроне дерева расширяют область заблуждений. Достаточно разоблачить одну господствующую вымышленную закономерность и вера в натуральность знаний современной науки будет подорвана. Образ мнимых достижений лопнет и откроется ящик, из которого вывалятся псевдонаучные теории. Истинное знание, скрытое под спудом, разорвет порочный круг и вырвется на свободу. Подобные события происходили в прошлом, зреют в настоящем и обязательно свершатся в будущем. Задача подлинной философии заключается в том, чтобы разоблачать теоретические бессмыслицы. Чем дольше фальшивые теории сохраняют главенствующее положение, поддерживая конструкцию ложного знания, тем серьезней будут последствия от ее стремительного крушения.
2. Истечение заряженных частиц из катода
Представление о структуре электрона развивалось постепенно. Иоганн Риттер в 1801 году высказал мысль о дискретной, зернистой структуре электричества. В 1820 году датский физик Х. Эрстэд установил связь между электричеством и магнетизмом. В этом же году французский физик А. Ампер впервые объединил электричество и магнетизм и сформулировал законы взаимодействия электрических и магнитных полей. В 1831 году английский физик М. Фарадей открыл явление электромагнитной индукции. В начале 1859 г. Ж. Плюккер исследовал спектры разреженных газов в трубках Гейслера. Он обнаружил, что с понижением давления воздуха в трубке до 1 мм ртутного столба «фарадеево темное пространство» увеличивается, а свечение вокруг катода становится более протяженным [15]. К концу XIX века были установлены следующие закономерности: 1) лучи испускаются катодами, когда через разреженное пространство трубки проходит ток; 2) лучи распространяются прямолинейно; 3) лучи отклоняются магнитным полем. В 1895 г. Плюккер сообщил об опыте, который доказывал, что катодные лучи переносят отрицательный электрический заряд.