Астрофизики изучают окружающую нас Вселенную, состоящую из комет и метеорных тел, планет и их спутников, звезд, межпланетной и межгалактической среды, основываясь на результатах наблюдений за электромагнитным излучением. Астрономия изучает поступательное и вращательное движения небесных тел и применяет полученные закономерности для вычисления орбит планет, комет, и других тел (включая и искусственные). Закономерности в астрономии, как и прочих науках, недостаточно надежны для окончательных выводов. В свое время были приняты гелиоцентрическая и геоцентрическая система мира два учения о солнечной системе, основанные на противоположных относительных движениях Земли и Солнца. Вращение любого космического объекта вокруг своей оси, или массивной звезды, бездоказательное утверждение, его можно допустить лишь теоретически. По сути это вопрос интерпретации того, что принять в качестве неподвижного объекта. Практически все, что мы знаем о космосе, известно нам благодаря поступившим из космоса к Земле электромагнитным излучениям. При этом утверждается, что свет распространяется в вакууме с постоянной скоростью (с). Свет это особый вид электромагнитных волн, воспринимаемый человеческим глазом. Как гласит теория, электромагнитное излучение имеет двойственную природу: обладает волновыми и корпускулярными (дискретными) свойствами. Электромагнитная волна состоит из электрической и магнитной составляющих, перпендикулярных друг другу и к направлению движения волны. Утверждается, что переменные электромагнитные поля могут существовать самостоятельно, независимо от возбудивших их электрических зарядов. [3, с. 115]. В отличие от звуковых волн и других волновых процессов, для распространения электромагнитного излучения не нужна проводящая среда. У Максвелла первоначальное мнение было иное: «С какими бы трудностями в наших попытках выработать состоятельное представление о строении эфира ни приходилось нам сталкиваться, но несомненно, что межпланетное и межзвездное пространства не суть пространства пустые, но заняты материальной субстанцией или телом, самым обширным и, нужно думать, самым однородным, какое только нам известно» [4].
На данный момент в мире не существует полной системы знаний. Поэтому ничто в естествознании не может быть признано окончательно установленным и доказанным. Физика одна из наиболее консервативных наук об общих законах природы и материи, ее структуре и движении. В последние столетия лидирующее положение в науке занимает опытно-экспериментальный метод. Когда-то он дал положительные результаты в научно-техническом прогрессе. С течением времени эффективность от вложения средств в науку стала снижаться. Многочисленные достижения в физике группируются вокруг открытия элементарных частиц. Пока не видно, что могло бы стать драйвером ускоренного развития знания. С конца XX века фундаментальная наука топчется на месте, несмотря на солидные финансовые вливания. Плеяда ученых, генерировавшая открытия в конце XVIII и начале XIX веков, иссякла. Не появились новые талантливые физики, подобные М. Фарадею. Английский ученый не подсчитывал материальную выгоду от внедрения открытий. Они сами пробивали дорогу к практическому применению. Фарадей с глубоким уважением относился к чужому мнению, но, руководствовался собственным опытом и умом. Ученого интересовало абсолютно знание. Он не признавал то или иное суждения истинным лишь потому, что оно высказано авторитетом в научном мире.
Физики радовались, думая, что в микромире действуют законы космического пространства: отрицательные электроны вращаются вокруг атомного ядра подобно тому, как планеты вращаются вокруг Солнца. Что в одном случае давала гравитация, то в другом обеспечивалось взаимным притяжением противоположно заряженных электрических зарядов. Ученые надеялись, что в скором времени поймут строение атома и процессы, происходящие в нем. Теория не смогла продвинуться в этом направлении, при дальнейшем развитии науки. М. Планк обратил внимание на отличие в системах: электроны могут описывать лишь вполне определенные траектории, отличающиеся друг от друга дискретно. У планет никакая траектория, по сравнению с другими, не является заведомо предпочтительной [5]. Ожидание, что несоответствие удастся каким-то образом объяснить позже, не оправдалось. Сравнение движений планеты вокруг Солнца и электрона вокруг атомного ядра привело ученых к вопросу о положении электрона на орбите и скорости. Более позднее исследование показало, что в этом вопросе нет аналогии. Планк призвал сделать выводы из этого примера и в дальнейшем проявлять осторожность при формулировке какой-либо новой идеи, перенося понятия и законы из одной области в другую [6].
Убеждение, согласно которому основы научной теории имеют чисто умозрительный характер, еще не было господствующим в XVIII и XIX веках, считает Эйнштейн. По его наблюдениям, оно получало прочное основание, по мере того как в мышлении отдалялись друг от друга фундаментальные понятия и законы, с одной стороны, с теми выводами, которые должны быть сопоставлены с опытом, с другой стороны [7]. Со временем ученые стали замечать, что многие годы наука не способна давать ответы на отдельные вопросы. Гранды мировой науки (и не только), продвигавшие на олимп квантовую теорию, засомневались в справедливости установленных в физике законов. Подозрение высказывали Э. Шредингер, Луи де Бройль, П. Дирак, В. Гейзенберг, Л. Бриллюэн, Р. Фейнман и другие известные ученые. Альберт Эйнштейн в конце жизни сомневался практически во всем, что успел сделать. По их высказываниям можно понять, что беспокоило ученых.
«Нельзя надеяться, что в квантовой физике метод возмущений все-таки даст исчерпывающий ответ, если только не придерживаться того, что согласно квантовой физике не происходит ничего подобного этому и что весь ее аналитический аппарат предназначен лишь для того, чтобы сообщать нам, с какой вероятностью можно встретить систему, перепрыгивающую из одного состояния в другое, причем для отбора этих состояний откровенно ставится условие, чтобы они удовлетворяли нашим требованиям удобства и доступности аналитического рассмотрения. Но это же все равно, что выдавать желаемое за действительное» [8].
Э. Шредингер«Трудно также удержаться от подозрения, что статистический характер теории обусловлен, по-видимому, неполнотой описания и не имеет никакого отношения к природе вещей» [9].
«Кроме того, представление о фотоне как о точечной структуре не позволяет объяснить интерференционные явления, возникающие только при взаимодействии обоих пучков. За необычайный успех этой теории пришлось платить двойной ценой: отказаться от требования причинности (ее никак нельзя проверить в атомной области) и оставить попытки описания реальных физических объектов в пространстве и времени» [10].
А. Эйнштейн«Ни о взаимодействии электронов, которые из-за одноименности своих зарядов должны были сильно отталкиваться, ни о периоде их обращения вокруг ядра, ни о месте, в котором они находятся в разные моменты времени, нельзя было ничего сказать, ибо ни одну из этих величин нельзя было измерить ни прямо, ни косвенно. Наоборот: то, что удавалось установить путем наблюдений, свидетельствовало о необходимости нового представления о природе электрона» [5]. По мнению ученого, когда казалось, что наука достигла высшей степени совершенства, наступил кризис физического мировоззрения. По своей глубине и остроте он «превышает все предыдущие».