Левенчук Анатолий - Интеллект-стек 2023 стр 3.

Шрифт
Фон

Мышление определим как ту функцию/поведение интеллекта, которое даёт эффективность в научении решению самых разных проблем. Эффективность  это с какой скоростью при равных затратах ресурсов оператор/владелец интеллекта (человек, машина, коллектив людей и машин) чему-то может научиться, с учётом разнообразия возможных к научению решений проблем. Научиться  это от «проблемы» (не знаю, как решать эту проблему с доступными ресурсами) перейти к «задаче» (знаю практику, имею мастерство решить задачу с доступными ресурсами, могу оценить потребное время).


Дальше всё больше и больше мир приходит к консенсусу по самым разным не слишком очевидным вещам:

 «проблемы» понимаются как неприятные сюрпризы, которые ожидаются в будущем, а решение проблем  их предотвращение («похоже, зимой будет холодно и можно замёрзнуть насмерть  надо построить дом и запастись топливом для обогрева»).

Learning/обучение/познание перестали понимать как обучение одного организма коровы, или человека, или одного экземпляра нейронной сети с момента рождения до момента, когда можно уже обнаруживать проблемы и решать их. Более того, даже для организма начали делить на «предобучение» (prelearning, именно это чаще всего у людей называют «познание», в AI это обучение «голой» нейросетки до уровня большой языковой модели, LLM) до уровня, когда можно уже разговаривать, «настройку на предметную область» (finetune, аналог «прохождения курсов»), few shot learning (понимание объяснения на буквально нескольких примерах), in-context learning (понимание того, что происходят прямо в текущей ситуации). Но в целом начали говорить, что обучение идёт на нескольких уровнях: аппаратуры (эволюция, геном), накопленное организмами и передающееся на каких-то носителях знание (мемом), и уже после этого  что там происходит с обучением организма.

Интеллект перестали считать вычислителем, который учится ровно таким способом, каким учатся животные или люди. В физике «вычислителем» называют что угодно, что имеет память  неэргодические системы. Изменение состояния памяти  это и есть вычисление. Тут же стало можно говорить о степенях «умности» даже для молекулы, имеющей какие-то свои состояния.


Но нас по-прежнему волнует вопрос обучения отдельного человека или отдельного экземпляра GAI (общего для самых разных типов проблем искусственного интеллекта, который по своей «умности» как-то сравним с интеллектом человеческим, или даже превышает человеческий интеллект, иногда называемый «естественным»).

Характеристики силы интеллекта (силы мышления, «умности») предлагались самые разные, например «вменяемость»/persuadability5 как лёгкость в обучении агента с каким-то уровнем интеллекта. Скажем, часы можно обучить показывать что-то другое, только изменив их конструкцию. Кошку можно обучить, задействовав какую-то дрессировку, повторениями каких-то ситуаций в реальном мире и затем подкрепление правильного поведения вознаграждением. А вот человеку (взрослому! Познавшему уже достаточно, чтобы понимать речь!) достаточно что-то просто сказать: это очень быстро, крайне энергоэффективно. Современный AI оказался крайне вменяемым (это стало очевидно с публикацией 14 марта 2023 года языковой модели GPT-4 фирмы OpenAI).

При этом «агентом» иногда начали называть что угодно, от молекулы до человечества, а иногда  только системы, показывающие какую-то степень умения что-то спланировать в будущем и затем выполнить этот план, достигнув намеченной цели. Скажем, если обезьяна видит банан на дереве и планирует затем маршрут к банану в обход препятствий, то  точно агент. Если инфузория просто ползёт по градиенту к где-то растворяемому в жидкости кусочку сахара  иногда агент, а иногда  не агент, ибо не может планировать свои действия. И тут же выяснилось, что понятие «агент» очень нечётко определено, скажем, человеческие детёныши из «не очень агента» переходят в «явно уже агент» довольно растянуто во времени, нет чёткой границы.

Мы достаточно говорили о безмасштабном и неантропном подходе к интеллекту агентов в самых разных курсах Школы системного менеджмента. Поэтому не будем приводить тут подробности (это фронтир, и ситуация тут меняется каждую пару месяцев: идут открытия в физике, биологии, а также изучаются результаты инженерной работы по созданию AI. Не очень понятно, какая это наука изучает AI, ибо объект настолько сложен, что им занимаются представители самых разных наук. Но чаще всего это науки, которые и раньше занимались мышлением, когда был доступен только человеческий интеллект. Речь идёт о дисциплинах интеллект-стека (семантика, математика, физика, алгоритмика, логика и т.д.). Наш курс как раз посвящён этим дисциплинам, при помощи которых вообще идёт познание как ориентирование в сложном и быстроменяющемся мире с одной единственной целью  в конечном итоге выжить на уровне организмов, на уровне популяций (в том числе всей популяции вида), на уровне жизни.

Ограничимся пока только одной характеристикой интеллекта: ускорение разбирательства с неизвестным (помним, что «вменяемость»  это другая характеристика, способность к планированию тоже важна, есть и другие предложения по тому, какие характеристики оказываются важны). И ограничимся пока только скоростью познания одного человека, а не ускорением познания в ходе эволюции и техно-эволюции, проходящей с участием множества людей. Если совсем грубо определять силу интеллекта, то если агент смог научиться операционному менеджменту или высшей математике за год (то есть перейти от «не знаю как решать эти проблемы» к «знаю, как решать эти задачи»)  отлично! Другой агент смог за два года при примерно том же уровне затраты усилий  интеллект этого агента вдвое хуже. Третий агент не смог научиться даже за десять лет (больной человек, или даже собака)  у него совсем плохо с интеллектом!

Это отличается от произвольных «народных» трактовок понятия «мышление» (у нас мышление::функция) и понятия «интеллект» (у нас интеллект::функциональный объект) или даже трактовок каких-то отдельных научных сообществ (этих трактовок множество!). Более того, если брать few shot learning, то современные системы машинного интеллекта уже сегодня демонстрируют силу интеллекта больше, чем люди!

И, конечно, мы игнорируем тут множество людей, которые приходят тут со своими определениями мышления и утверждают, что именно их определение мышления  правильное. «Мышление  это оперирование образами», «мышление  это осознанный поиск правильных интуиций», «мышление  это поиск лучшего научного описания проблемы», и это только первая линия «народных» определений. Вторая линия приходит как пересказ случайно выдернутой из литературы разных лет идеи из какой-нибудь околохудожественной философской школы. Скажем, берём Ницше и гуглим «Ницше мышление»  и там сразу «воля к власти как осуществление мышления», и дальше можно уже бесконечно развлекаться словесными построениями вообще вне связи с идеями Ницше или его последователей. Обязательно придёт в дискуссию кто-то, кто погуглил «Анохин мышление», и он будет рассказывать про афферентацию и мозг, и полное отсутствие связи с волей власти его волновать не будет (равно как любителей Ницше не будет волновать афферентация).

Нет наград, но есть избегание неизвестности. Оптимизм

Мы говорим об интеллекте много проще: как вычислителе, который способен находить решение разнообразных проблем, понимаемых как предотвращение неприятных сюрпризов, которые можно ожидать в будущем (про проблемы  это мы берём из теории active inference6). Вычисления::функция этого интеллекта::функциональный объект  это и есть мышление. Больше разнообразие этих проблем  выше уровень интеллекта, мощнее мышление, для определения силы интеллекта через скорость решения проблем (то есть скорость обучения решать какой-то класс проблем, если говорить точнее) используем подход François Chollet7.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3