Всего за 199 руб. Купить полную версию
Анатолий Стор
Дьявольские простые числа, или Периодическая система натурального ряда
Как известно все натуральные целые числа, кроме единицы имеют по меньшей мере два делителя: единицу и само себя. Те из них, которые не имеют, никаких других делителей называются «простыми». Те числа, которые имеют еще и другие делители называются «составными». Единицу принято, не относить ни к простым ни к составным числам.
То, что простых чисел имеется бесконечное множество, было установлено еще в древности (Евклид 3 век до н.э.). Первой важной задачей теории числе, как определить является ли произвольное число простым или нет.
Первое что может прийти в голову, это делить данное число на все числа меньшее его. Но надо признать , что этот способ мало удовлетворителен. Некоторые энтузиасты вычислители за последние 200 лет составили и издали много таблиц простых чисел. Одна из обширных таблиц является таблица Д. Х.Леметра, содержащая все простые числа до 10 000 000. Появились уже таблицы превосходящие это число.
В течение нескольких столетий шла погоня за простыми числами, и многие математики боролись за честь стать открывателями самого большого из всех известных простых чисел.
Основное направление решения задал французский монах Мерсенна (15881648г.г.), который начал вычислять простые числа по формуле М
р
р
М
2
= 22
1 = 3 простоеМ
3
= 23
1 = 5 простоеМ
5
= 25
1 = 31 простоеМ
7
= 27
1 = 127 простоеМ
11
= 211
1 = 2047 = 23*89 составноеСамостоятельно вычислил простое число М
31
31
Пьер Фермаp
2^p
0
2^0
F
1
= 22^1
+ 1 = 5F
2
= 22^2
+ 1 =17F
3
= 22^3
+ 1 = 257F
4
= 22^4
+ 1=65537Однако все тот же Леонардо Эйлер показал, что число F
5
Общее решение задачи простых чисел показал древнегреческий математик из Александрии Эратосфен (около 200г. до н.э.) с помощью следующей схемы, которая называется «Решетом Эратосфена».
Его схема состоит в следующем: имеется последовательность всех целых чисел:1,( 2), (3), 4, (5), 6, (7), 8, 9, 10,(11), 12, (13), 14, 15, 16, (17), 18, (19), 20, 21 подчеркивается каждое второе число начиная с 2 (кроме самого числа 2). После этой операции первым подчеркнутым числом будет 3 оно простое взятое в скобки, как и другие простые числа также.
Оставив число 3 неподчеркнутым, будем подчеркивать каждое третье число после него, т.е. числа 6, 9, 12, 15, мы их подчеркиваем дважды, а которые пунктиром означает тройное подчеркивание, а некоторые из них уже были подчеркнуты поскольку они являются четными. На следующем шаге первым неподчеркнутым числом окажется число 5; оно простое. Оставив число 5 неподчеркнутым, но подчеркнем каждое пятое число после него, т.е. числа 10,15,20,25,; как и раньше часть из них уже оказалась подчеркнутой. Теперь наименьшим неподчеркнутым числом окажется число 7, тоже простое. Повторяя этот процесс, мы в конце концов получим последовательность неподчеркнутых чисел, все они (кроме числа 1) являются простыми. С помощью компьютеров получены простые числа до 100 000 000.