Случайная инициализация обычно используется, чтобы нарушить симметрию и избежать застревания в локальных минимумах.
3. Реализуйте распространение с прямой связью:
Передавайте входные данные через слои сети, по одному слою за раз.
Для каждого слоя вычислите взвешенную сумму входных данных и примените функцию активации для получения выходных данных слоя.
Прямое распространение продолжается до тех пор, пока не будет достигнут выходной уровень, генерируя прогнозы сети.
4. Определите функцию потерь:
Выберите подходящую функцию потерь, которая измеряет расхождение между прогнозируемыми выходными данными и истинными метками.
Общие функции потерь включают среднеквадратичную ошибку (MSE) для задач регрессии и потери кросс-энтропии для задач классификации.
5. Реализуйте обратное распространение:
Вычислить градиенты функции потерь по отношению к весам и смещениям сети.
Распространяйте градиенты назад по сети, слой за слоем, используя правило цепи исчисления.
Обновите веса и смещения с помощью алгоритма оптимизации, такого как градиентный спуск, на основе вычисленных градиентов.
6. Обучите сеть:
Перебирайте обучающие данные, передавая их в сеть, выполняя прямое распространение, вычисляя потери и обновляя параметры с помощью обратного распространения.
Отрегулируйте скорость обучения, которая контролирует размер шага обновления параметров, чтобы сбалансировать скорость сходимости и стабильность.
Отслеживайте прогресс обучения, оценивая потери на отдельном проверочном наборе.
7. Оцените сеть:
После того, как сеть будет обучена, оцените ее производительность на невидимых данных.
Используйте прямое распространение для создания прогнозов для набора оценочных данных.
Вычисляйте соответствующие показатели, такие как точность, прецизионность, отзыв или среднеквадратичная ошибка, в зависимости от типа проблемы.
8. Итерация и тонкая настройка:
Экспериментируйте с различными сетевыми архитектурами, функциями активации и параметрами оптимизации для повышения производительности.
Настройте модель, настроив гиперпараметры, такие как скорость обучения, размер пакета и методы регуляризации, такие как отсев или регуляризация L2.
Реализация нейронной сети с прямой связью включает в себя перевод математических концепций в код с использованием языка программирования и фреймворка глубокого обучения, такого как TensorFlow или PyTorch. Следуя шагам, описанным выше, и экспериментируя с различными конфигурациями, вы можете обучать и использовать нейронные сети для различных задач.
Тонкая настройка модели
Тонкая настройка нейронной сети предполагает оптимизацию ее производительности путем корректировки различных аспектов модели. В этой главе мы рассмотрим приемы тонкой настройки нейронной сети:
1. Настройка гиперпараметров:
Гиперпараметры это настройки, которые определяют поведение нейронной сети, но не изучаются на основе данных.
Примеры гиперпараметров включают скорость обучения, размер пакета, количество скрытых слоев, количество нейронов в каждом слое, параметры регуляризации и функции активации.
Тонкая настройка включает в себя систематическое изменение этих гиперпараметров и оценку производительности сети для поиска оптимальной конфигурации.
2. Планирование скорости обучения:
Скорость обучения определяет размер шага при обновлении параметров во время обучения.
Выбор подходящей скорости обучения имеет решающее значение для конвергенции и предотвращения превышения или застревания в локальных минимумах.
Методы планирования скорости обучения, такие как снижение скорости обучения с течением времени или использование адаптивных методов, таких как Adam или RMSprop, могут помочь точно настроить производительность модели.
3. Методы регуляризации:
Методы регуляризации предотвращают переобучение и улучшают обобщение, добавляя дополнительные ограничения или штрафы к функции потерь.
Регуляризация L1 и L2 добавляет штрафной термин к функции потерь в зависимости от величины весов, поощряя меньшие веса и уменьшая чрезмерную зависимость от определенных признаков.
Dropout случайным образом деактивирует часть нейронов во время обучения, заставляя сеть изучать более надежные и разнообразные представления.
4. Увеличение данных:
Методы дополнения данных модифицируют обучающие данные, чтобы увеличить их размер и разнообразие, помогая сети лучше обобщать.
Распространенные методы увеличения данных включают случайную обрезку, поворот, переворачивание и добавление шума или искажений к входным данным.
Увеличение данных может помочь уменьшить переобучение и улучшить способность модели обрабатывать изменения в реальных данных.
5. Перенос обучения:
Transfer Learning использует предварительно обученные модели на больших наборах данных и адаптирует их к новым задачам или областям.