Всего за 480 руб. Купить полную версию
(Рекуперация (от лат. Recuperatio) обратное получение, возвращение энергии, расходуемой при выполнении того или иного технологического процесса, движения, для повторного использования в том же процессе, движении).
При работе в режиме рекуперации, при решении текущей двигательной задачи с целью выйти на заданную величину напряжения включение сократительного аппарата мышцы происходит в режиме сопряжения (наложение фаз во времени) и суммации энергии растянутой соединительной ткани. Мышечное (концентрическое) сокращение синхронизировано с периодом обратного укорочения (возврата к исходной длине) упругих структур мышцы и начинается с началом первой функциональной реакции мышечного аппарата на активацию рефлекса растяжения.
Ортоградное положение и значительный эффект рекуперации энергии определяет механическую эффективность движений человека и выделяет его среди других видов млекопитающих. (К слову, именно эффективность механизма рекуперации энергии препятствует возможности быстро похудеть. Люди потребляют с пищей слишком много калорий, которые просто невозможно израсходовать при низкой двигательной активности).
Сохранение и повторное использование механической энергии происходит за счет действия трех механизмов:
1. Перехода кинетической энергии в потенциальную энергию гравитации и обратно. Экономия энергии в диапазоне 1025%. Зависит от типа таза и позвоночника, формы и длины костей.
2. Перехода (или передачи) механической энергии от одного звена к другому (напр. от бедра к голени) составляет от 30 до 40% от полной энергии. Зависит от соотношения длины маятников конечности, длина туловища, масс инерционные свойства отдельных сегментов.
3. Перехода кинетической энергии движения в потенциальную энергию деформации мышц и сухожилий и обратно. Составляет от 5 до 35%. Зависит от индивидуальной мышечной и связочной композиции. Чем выше процентное соотношение медленно сокращающихся мышечных волокон в составе мышцы, тем выше эффект рекуперации для данной мышцы. Для сухожилий и мышечной оболочки имеет процентное соотношение типов коллагена и эластина.
При вертикальном типе передвижения (с оптимальным мышечным балансом) мышечные затраты сведены к минимуму. Скелет человека «запружинен» эластической тягой/натяжением связок, фасций и мышечными соединительно-тканными структурами. Часто такую организацию называют мышечно-фасциальные поезда.
В такой системе происходит передача тягового усилия упруго-эластических компонентов с одних мышечно-фасциальных групп на другие. Такая система построена по типу хиральной системы, в которой все элементы закручены по спирали относительно центральной оси. При движении происходит чередование фаз скручивания-раскручивания с накоплением и отдачей энергии.
Во время бега спортсмен может сохранять около 80% полной механической энергии.
Таким образом, наиболее важным фундаментальным отличием локомоции человека от его эволюционных предшественников является тип передвижения, при котором сила гравитации и реакция опоры (отталкивание от поверхности) преобразуются непосредственно в движение. Система локомоции человека устроена таким образом, что антигравитационная система человека напрямую использует силу гравитации в двигательном акте, преобразуя и контролируя инерцию сегментов тела для осуществления движения с одновременной стабилизацией человека в гравитационном поле.
Эволюционный скачок/рывок представляет собой переход от преимущественно использования мышечной работы с малым КПД в качестве основной движущей силы к использованию условно «бесплатной» силы гравитации с минимальными мышечными затратами на передвижение. Условная «бесплатность» требует пояснения. В этой жизни приходиться платить за все, даже за «бесплатные» вещи.
Чем сложней система, тем более она уязвима к «поломкам» при отсутствии дублирующих механизмов, поддерживающих работоспособность в критических ситуациях. Срабатывает правило: прочность цепи зависит от прочности самого слабого звена. В случае с биокинематической системой человека, самым уязвимым звеном выступает соединительная ткань связочная и хрящевая. Данный тип ткани относится к брадитрофным, т.е. слабо питающимся и имеющим низкую репаративную способность при повреждении.
Выраженный дисбаланс в регионах скелета, нарушение сопряженности работы в смежных биокинематических звеньях могут привести к мгновенному нарушению в работе отдельных звеньев и выраженному патологическому влиянию на систему в целом.
Те «огрехи», которые «прощаются» гравитацией для локомоторных систем на 4-х конечностях (тип «стол»), не «прощаются» человеку в модели «маятник».
Общепринятая модель перевернутого маятника сильное упрощение. В такой модели звенья маятника рассматриваются как тонкие твердые тела, вращающиеся вокруг трех идеальных цилиндрических (!) шарниров, моделирующих голеностопный, коленный и тазобедренный суставы. Для математических расчетов вполне подойдет, но в реальности все куда более сложно.
Скелет человека также «сконструирован» с учетом хиральности всех биологических систем естественной асимметрии, свойства всего живого закручиваться по спирали.
Одно дело, если эта хиральность физиологическая и идет на повышение биокинематичесого энергетического потенциала, другое дело, если «хиральность» искусственного происхождения «школьные» сколиозы, сколиозирование при отсутствии коррекции выраженной разницы длинны ног и другие механизмы «кручения».
Весь скелет, в той или иной мере, имеет признаки структурной асимметрии. Длинные трубчатые кости у человека тоже имеют винтообразную форму. Это увеличивает прочность и способствует рекуперации. Мышцы вокруг костей закручены по спирали. Позвоночник закручен по часовой или против часовой стрелки. Таз также имеет вид слегка скрученной чаши. Вся система при движении скручивается и раскручивается, накапливая и освобождая энергию. При этом такой механизм препятствует точечному (локальному) износу отдельных структур. Это достигнуто благодаря возможности комбинированных движений. Тазобедренные и плечевые суставы по конструкции шаровые и обеспечивают три степени свободы. Лучезапястный и голеностопный две степени. Коленный позволяет кручение и скольжение. Подвздошные кости также смещаются относительно крестца во время ходьбы и бега.
Для описания нашей темы подходит другая, более расширенная маятниковая модель. В математических расчетах она не используется, но для раскрытия нашей темы она наиболее уместна.
В силу конструкции позвоночника и суставов, свободно стоящий человек не может остановиться в неподвижном состоянии (нет костного замыкания суставов). Удержание вертикальной позы сопровождается колебательным покачиванием из стороны в сторону относительно вектора гравитации в пределах малых амплитуд. Происходят достаточно сложные взаимовлияющие колебания как общего центра масс (ОЦМ), так и центра давления (ЦД) стоп на плоскость опоры, которые не совпадают по амплитуде и фазности. Это своеобразное равновесное самостабилизирующее раскачивание общего центра масс над площадью опоры. Описывается как «устойчивый конус».
Центр давления (ЦД) это та интегральная точка на плоскости опоры, в которую объёмное геометрическое тело человек, имеющий различную плотность тканей организма и постоянно меняющуюся конфигурацию сегментов туловища, как бы «усредняется» в реальном режиме времени в ходе поддержания вертикальной стойки.