Вадим Николаевич Шмаль - Применение элементов искусственного интеллекта в решении прикладных задач стр 5.

Шрифт
Фон

В этом разделе структура логического компонента рассматривается как топологическая декомпозиция логической структуры. Методы топологической декомпозиции и структурной декомпозиции и реконфигурации могут использоваться для декомпозиции логических компонентов в этой логической структуре. Если структурный элемент и логический компонент имеют разные логические ограничения, то логический компонент будет создан и передан в логические ограничения при структурной декомпозиции, но логический элемент не будет помещен в логические ограничения.

Логический компонент не может быть непосредственно помещен в структуру как структурный элемент. Структурный элемент либо создается, либо добавляется в топологическую структуру из логических ограничений в топологической структуре. Методы топологической декомпозиции и структурной декомпозиции и реконфигурации могут использоваться для создания структурных элементов в топологической структуре. Логические элементы топологической структуры помещаются в топологическую структуру путем наложения структурных ограничений на топологическую структуру.

Семантическая неоднородность

Семантическая неоднородность возникает, когда схема базы данных или наборы данных для одного и того же домена разрабатываются независимыми сторонами, что приводит к различиям в значении и интерпретации значений данных. Чтобы различать базы данных и наборы данных с разными целями и структурами авторства, метаданные в разных хранилищах данных иногда помечаются тегами метаданных, описывающими запрос и точку сбора. Это называется семантической неоднородностью.

Например, схемы базы данных могут быть разработаны для разных приложений с разными семантическими структурами, но с согласованностью. С другой стороны, наборы данных и ресурсы могут извлекаться разными способами и представлять разные информационные ресурсы. Аналитика данных  это процесс сведения информации к ее наиболее релевантной сути, оценки актуальности и интерпретации различных объектов данных и информационных точек на основе их связи с другими данными.

Семантическая неоднородность играет ключевую роль во многих случаях, например:

Эффективное управление знаниями, управление рассредоточенными, сложными и постоянно меняющимися активами знаний.

Создание ориентированной на человека инфографики, веб-приложений или аудиовизуального контента в системах управления знаниями.

Независимо разработанные базы данных знаний и мультимедийные среды (например, веб-сайты, веб-приложения) уже используются многими профессионалами. И теперь быстрорастущий рынок Интернета вещей (IoT) все больше внимания уделяет совершенствованию встроенных устройств, таких как интеллектуальные устройства и датчики, которые являются источниками знаний, а также информации. И хотя самоорганизующиеся и самонастраивающиеся системы все чаще встречаются в динамических промышленных системах, более разнообразные подходы новых поколений экспертов по всему миру вдохновляют на создание совершенно новых концепций в управлении знаниями. Это также проявляется в разработке подходов к базам данных для конкретных приложений, которые специфичны для каждой области или проекта.

Учитывая разные уровни накопления знаний в разных областях, мы не ожидаем, что базы данных для конкретных приложений в системах управления знаниями будут использоваться для всех видов данных. Только представьте, если бы в системе управления знаниями, основанной на данных, можно было бы найти только базу данных или запрос, который подходит для приложения. Это может показаться в некоторых случаях слишком простым, а иногда и слишком наивным. Когда мы имеем дело с несколькими системами данных для управления знаниями, мы ожидаем, что базы данных или механизмы запросов разного уровня сложности смогут работать вместе. Это могло привести к созданию многочисленных баз данных и механизмов запросов, что привело к семантической неоднородности.

В настоящее время, когда все больше и больше баз данных разрабатываются на основе конкретных баз данных по одной и той же теме, может возникнуть необходимость в определении новых наборов данных (образцов) для каждой базы данных или запроса к базе данных. Некоторые решения существуют, например, для классификации полей метаданных в базах данных и базах данных для разных коллекций. Но задача состоит в том, чтобы как можно чаще использовать существующие базы данных, а не создавать новые базы данных с разными целями.

Еще одним хорошим примером семантической неоднородности является множество программных платформ и механизмов обработки данных, используемых для веб-сервисов. У каждой платформы и базы данных есть свой способ отображения данных. Важно не использовать разные источники данных для разных веб-приложений, а найти способ согласовать разные источники данных с разными веб-приложениями. Хотя источники данных, управление данными, приложения и системы неоднородны, нам нужна база данных, которая предоставляет все необходимые данные, когда требуются разные приложения или системы. И по мере разработки новых платформ и баз данных можно ожидать, что семантическая неоднородность останется ключевой особенностью систем анализа данных.

Обнаружение данных

Сложность различных баз данных и механизмов данных часто скрыта от конечного пользователя. Во многих случаях, если пользователь данных не знаком с источниками данных, системами управления данными и анализа данных, он, вероятно, не сможет найти нужные ему данные. Инструменты обнаружения данных, которые используются специалистами по данным на предприятии, обеспечивают более целостное представление данных во всех приложениях и источниках данных и используются для обнаружения источников данных и систем управления данными. Поэтому инструменты обнаружения данных, предназначенные для обнаружения источников данных и систем управления данными, должны быть способны интегрироваться со всеми системами, используемыми для создания данных. Кроме того, любой инструмент должен иметь возможность связать инструмент обнаружения данных с другими инструментами анализа данных или системами управления данными.

Каково будущее инструментов обнаружения данных и где мы можем ожидать появления решений для обнаружения данных для конкретных приложений? Часть текущей работы можно рассматривать как инструменты для определения того, какие базы данных и источники данных доступны, как следует комбинировать источники данных и базы данных и какие данные фильтровать.

Применение элементов искусственного интеллекта в решении прикладных задач

читать Применение элементов искусственного интеллекта в решении прикладных задач
Вадим Николаевич Шмаль
Sergey Pavlov, master Plekhanov Russian University of Economics. Vadim Shmal, Ph. D., associate professor Russian University of Transport (MIIT).
Можно купить 490Р
Купить полную версию

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3