И. А. Кощаев - Технологии производства и переработки моркови. Монография стр 3.

Книгу можно купить на ЛитРес.
Всего за 490 руб. Купить полную версию
Шрифт
Фон

Каротиноиды  группа биологически активных соединений, которая всегда привлекала внимание как диетологов за счет их пользы для здоровья и безопасного источника природного витамина А, который образуется при ферментативном метаболизме, так и работников пищевой промышленности  для формирования оптимальных цветовых характеристик и пищевой ценности пищевых продуктов. Химическая природа каротиноидов определяет их множественные свойства: так, наличие системы сопряженных двойных связей обуславливает их окраску, количество двойных связей  антиоксидантную активность, наличие ионовых колец  провитаминные свойства.

В природе обнаружено около 750 каротиноидов, в большей степени они имеют растительную природу, но также содержатся в рыбе и морепродуктах (астаксантин) и водорослях (фукоксантин).

В организм человека вместе с пищевыми продуктами поступает только 40 каротиноидов, из них 10% проявляют А-витаминную активность.

Каротиноиды представляют собой соединения, содержащие 40 углеродных атомов, построенных из 8 изопреновых фрагментов и образующих полипреноидную цепь с сопряженной системой двойных связей. Эта цепь может циклизироваться на концах, образуя несколько типов иононовых колец. Длина цепи оказывает влияние на окраску каротиноидов (от желтого и оранжевого до глубокого красного), а наличие иононовых колец  на витаминную активность. При наличии в структуре каротиноидов 9 и более сопряженных связей они проявляют максимальное защитное действие от синглетного кислорода.

Каротиноиды делят на каротины, состоящие из атомов углерода и водорода, и ксантофиллы, имеющие в своем составе дополнительно атомы кислорода в виде гидрокси-, метокси-, эпокси- или кетогрупп. Представители каротинов обычно оранжевого цвета (α- и β-каротины). Более разнообразны по цвету ксантофиллы: астаксантин  ярко-алый, капсантин  темно-красный, лютеин, зеаксантин и виолаксантин  желтые. При включении в цепь сопряжения кето-групп, например, при окислении зеаксантина до капсантина и капсорубина в перцах (Capsicum annuum) происходит замена оранжевой окраски на красную. Довольно часто оранжевая окраска каротиноидов маскируется другими пигментами, например хлорофиллом или антоцианами. Это наблюдается в листовых овощах, зеленых плодах, сине-окрашенных ягодах и др.

Из 40 каротиноидов, поступающих с пищей, основными являются три каротина (α- и β- каротин, ликопин) и три ксантофилла (βкриптоксантин, зеаксантин и лютеин), имеющие типичное строение для соответствующей группы каротиноидов.

В растительных объектах каротиноиды представлены в транс-, транс-цис- и цисформах, а также этерифицированы жирными кислотами. Более стабильной и энергетически выгодной считается транс-форма, но теоретически цис-транс-изомеризация может происходить по каждой двойной связи, что частично или полностью происходит при приготовлении пищи. Цис-изомеры обладают большей биологической активностью, более легко встраиваясь в биомембраны и липопротеины, чем транс-изомеры.

Химическая структура каротиноидов, наиболее часто встречающихся в свежих плодах и овощах и пищевых продуктах с их использованием А-витаминные свойства. Каротиноиды являются безопасным и единственным источником природного витамина А, который образуется при ферментативном метаболизме каротиноидов в организме человека и животных. Однако не все каротиноиды обладают А-витаминной активностью. Из 40 каротиноидов, регулярно потребляемых человеком вместе с пищевыми продуктами, только некоторые из них (10%) с β-кольцом без кислородсодержащих функциональных групп и полиеновой цепью не менее 11 атомов углерода, проявляют А-витаминные свойства. К ним относятся транс- и транс-цис-изомеры α-, β-, γ-каротинов и β-криптоксантина. Среди них β-каротин является наиболее мощным каротиноидом провитамина А, у которого каждая молекула расщепляется на два ретинола витамина А.

Биоконверсия β-каротина в витамин А происходит путем окислительного метаболизма молекулы по центральной 1515 πсвязи под влиянием фермента β-каротин-15-15 диоксигеназы. В растениях этого фермента нет, поэтому растительные объекты витамина А не содержат. Из 1 молекулы β-каротина образуется 2 молекулы витамина А, а из α- и γкаротинов  только одна. 6 мкг β-каротина эквивалентны 1 мкг витамина А. Ликопин и δ-каротин витаминной активностью не обладают.

Каротиноиды сами нетоксичны, а образование из них витамина А энзиматически лимитировано. Поэтому при потреблении пищевых продуктов, содержащих каротиноиды, передозировки витамина А не происходит и верхний допустимый уровень потребления не установлен. Среднее потребление β-каротина в разных странах колеблется в пределах 1,8 5,0 мг/сутки.

Для населения России установлена физиологическая потребность β-каротина для взрослых, которая составляет 5 мг/сутки (МР 2.3.1.243208).

Количество сопряженных двойных связей полиеновой цепи в структуре каротиноидов за счет обобщения π-электронов обуславливает их роль липофильных антиоксидантов. Каротиноид может взаимодействовать со свободными радикалами, передавая электроны, с образованием аддукта или отдавая водород с образованием относительно стабильных каротиноидных радикалов. С увеличением окислительного потенциала каротиноидов их антиоксидантная активность возрастает.

Каротиноиды являются наиболее эффективной «ловушкой» синглетного кислорода, переводя его в нормальное триплетное состояние, при этом рассеивая избыток энергии возбуждения. Каротиноиды принимают энергию возбуждения «триплетного» хлорофилла или реагируют непосредственно с синглентным кислородом. Каждая молекула β-каротина способна разрушить до 300 молекул синглентного кислорода. По сравнению с витамином Е каротиноиды улавливают его более активно: β-каротин в 25 раз, ликопин в 100 раз, астаксантин в 500 раз. Наибольшее защитное действие от УФ-излучения за счет кето-группы с обоих концов системы сопряженных двойных связей проявляет астаксантин. Его требуется в 100 раз меньше, чем β-каротина и в 1000 раз меньше, чем лютеина. Совместное присутствие ликопина, лютеина и β-каротина способно подавлять 4050% индуцированное УФ перекисное окисление липидов, но максимальную активность проявляет ликопин.

На моделях in vitro установлен ряд антиоксидантной активности каротиноидов: ликопин> α-токоферол> α-каротин> β-криптоксантин> зеаксантин> β-каротин> лютеин. Цис-изомеры каротиноидов обладают большей антиоксидантной активностью, чем их транс-изомеры. Обнаружен синергизм антиоксидантного действия каротиноидов с другими жирорастворимыми антиоксидантами  α-токоферолом и коэнзимом Q10.

Каротиноиды защищают токоферолы от окисления, в первую очередь, синглентным кислородом, а токоферолы улавливают пероксильные радикалы каротиноидов, способные инициировать развитие цепей свободно радикального окисления. Синергизм β-каротина с α-токоферолом проявляется лишь при соотношении 1:4, а для более ненасыщенного астаксантина с α-токоферолом в соотношении 1:12. Увеличение концентрации каротиноидов приводит к антогонизму. Включение в систему фосфолипидов увеличивает эффективность антиоксидантного действия даже при высоких концентрациях каротиноидов.

Каротиноиды обладают многими биологическими свойствами, и их высвобождение из пищевой матрицы наиболее важно для усвоения человеком. Усвояемость каротиноидов зависит от пищевых источников. Из свежего (необработанного) растительного сырья в 3 раза большей биодоступностью обладают фрукты и ягоды, чем овощи. Причем биодоступность β-каротина сырой моркови составляет 1725%.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3