Александр Юрьевич Чесалов - Глоссариум по искусственному интеллекту: 2500 терминов. Том 1 стр 4.

Шрифт
Фон

Активное обучение/Стратегия активного обучения (Active Learning/ Active Learning Strategy)  это особый способ полууправляемого машинного обучения, в котором обучающий агент может в интерактивном режиме запрашивать оракула (обычно человека-аннотатора) для получения меток в новых точках данных. Подход к такому обучению основывается на самостоятельном выборе алгоритма некоторых данных из массы тех, на которых он учится. Активное обучение особенно ценно, когда помеченных примеров мало или их получение слишком затратно. Вместо слепого поиска разнообразных помеченных примеров алгоритм активного обучения выборочно ищет конкретный набор примеров, необходимых для обучения35,36,37.


Алгоритм (Algorithm)  это точное предписание о выполнении в определенном порядке системы операций для решения любой задачи из некоторого данного класса (множества) задач. Термин «алгоритм» происходит от имени узбекского математика Мусы аль-Хорезми, который еще в 9 веке (ок. 820 г. н.э.) предложил простейшие арифметические алгоритмы. В математике и кибернетике класс задач определенного типа считается решенным, когда для ее решения установлен алгоритм. Нахождение алгоритмов является естественной целью человека при решении им разнообразных классов задач. Также, алгоритм  это набор правил или инструкций, данных ИИ, нейронной сети или другим машинам, чтобы помочь им учиться самостоятельно; классификация, кластеризация, рекомендация и регрессия  четыре самых популярных типа38.


Алгоритм BLEU (BLEU)  это алгоритм оценки качества текста, который был автоматически переведен с одного естественного языка на другой. Качество считается соответствием между переводом машины и человека: «чем ближе машинный перевод к профессиональному человеческому переводу, тем лучше»  это основная идея BLEU39.


Алгоритм Q-обучения (Q-learning)  это алгоритм обучения, основанный на ценностях. Алгоритмы на основе значений обновляют функцию значений на основе уравнения (в частности, уравнения Беллмана). В то время как другой тип, основанный на политике, оценивает функцию ценности с помощью жадной политики, полученной из последнего улучшения политики. Табличное Q-обучение (при обучении с подкреплением) представляет собой реализацию Q-обучения с использованием таблицы для хранения Q-функций для каждой комбинации состояния и действия. «Q» в Q-learning означает качество. Качество здесь показывает, насколько полезно данное действие для получения вознаграждения в будущем40.


Алгоритм дерева соединений (также алгоритм Хьюгина) (Junction tree algorithm)  это метод, используемый в машинном обучении для извлечения маргинализации в общих графах. Граф называется деревом, потому что он разветвляется на разные разделы данных; узлы переменных являются ветвями41,42.


Алгоритм любого времени (Anytime algorithm)  это алгоритм, который может дать частичный ответ, качество которого зависит от объема вычислений, которые он смог выполнить. Ответ, генерируемый алгоритмами anytime, является приближенным к правильному. Большинство алгоритмов выполняются до конца: они дают единственный ответ после выполнения некоторого фиксированного объема вычислений. Однако в некоторых случаях пользователь может захотеть завершить алгоритм до его завершения. Эта особенность алгоритмов anytime моделируется такой теоретической конструкцией, как предельная машина Тьюринга (Бургин, 1992; 2005)43.


Алгоритм обучения (Learning Algorithm)  это фрагменты кода, которые помогают исследовать, анализировать и находить смысл в сложных наборах данных. Каждый алгоритм представляет собой конечный набор однозначных пошаговых инструкций, которым машина может следовать для достижения определенной цели. В модели машинного обучения цель состоит в том, чтобы установить или обнаружить шаблоны, которые люди могут использовать для прогнозирования или классификации информации. Они используют параметры, основанные на обучающих данных  подмножестве данных, которое представляет больший набор. По мере расширения обучающих данных для более реалистичного представления мира, алгоритм вычисляет более точные результаты44.


Алгоритм оптимизации Адам (Adam optimization algorithm)  это расширение стохастического градиентного спуска, который в последнее время получил широкое распространение для приложений глубокого обучения в области компьютерного зрения и обработки естественного языка45.


Алгоритм оптимизации роя светлячков (Glowworm swarm optimization algorithm)  это метаэвристический алгоритм без производных, имитирующий поведение свечения светлячков, который может эффективно фиксировать все максимальные мультимодальные функции46.


Алгоритм Персептрона (Perceptron algorithm)  это линейный алгоритм машинного обучения для задач бинарной классификации. Его можно считать одним из первых и одним из самых простых типов искусственных нейронных сетей. Это определенно не «глубокое» обучение, но это важный строительный блок. Как и логистическая регрессия, он может быстро изучить линейное разделение в пространстве признаков для задач классификации двух классов, хотя, в отличие от логистической регрессии, он обучается с использованием алгоритма оптимизации стохастического градиентного спуска и не предсказывает калиброванные вероятности47.


Алгоритм поиска (Search algorithm)  это любой алгоритм, который решает задачу поиска, а именно извлекает информацию, хранящуюся в некоторой структуре данных или вычисленную в пространстве поиска проблемной области, либо с дискретными, либо с непрерывными значениями48.


Алгоритм пчелиной колонии (алгоритм оптимизации подражанием пчелиной колонии, artificial bee colony optimization, ABC) (Bees algorithm)  это один из полиномиальных эвристических алгоритмов для решения оптимизационных задач в области информатики и исследования операций. Относится к категории стохастических биоинспирированных алгоритмов, базируется на имитации поведения колонии медоносных пчел при сборе нектара в природе49.


Алгоритмическая оценка (Algorithmic Assessment)  это техническая оценка, которая помогает выявлять и устранять потенциальные риски и непредвиденные последствия использования систем искусственного интеллекта, чтобы вызвать доверие и создать поддерживающие системы вокруг принятия решений ИИ50.


Алгоритмическая предвзятость (Biased algorithm)  это систематические и повторяющиеся ошибки в компьютерной системе, которые приводят к несправедливым результатам, например, привилегия одной произвольной группы пользователей над другими51,52.


Алгоритмы машинного обучения (Machine learning algorithms)  это фрагменты кода, которые помогают пользователям исследовать и анализировать сложные наборы данных и находить в них смысл или закономерность. Каждый алгоритм  это конечный набор однозначных пошаговых инструкций, которые компьютер может выполнять для достижения определенной цели. В модели машинного обучения цель заключается в том, чтобы установить или обнаружить закономерности, с помощью которых пользователи могут создавать прогнозы либо классифицировать информацию. В алгоритмах машинного обучения используются параметры, основанные на учебных данных (подмножество данных, представляющее более широкий набор). При расширении учебных данных для более реалистичного представления мира с помощью алгоритма вычисляются более точные результаты. В различных алгоритмах применяются разные способы анализа данных. Они часто группируются по методам машинного обучения, в рамках которых используются: контролируемое обучение, неконтролируемое обучение и обучение с подкреплением. В наиболее популярных алгоритмах для прогнозирования целевых категорий, поиска необычных точек данных, прогнозирования значений и обнаружения сходства используются регрессия и классификация53.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3