г. Постоянство и изменчивость
Прокариотные организмы – бактерии, археи и цианобактерии – размножались делением. При таком способе размножения материнская клетка делится на две новых клетки, а сама исчезает. Теоретически можно представить и другие варианты, например деление на четыре (впоследствии востребованное у более сложных организмов) или, скажем, на три (на нашей планете не использованное). Но делиться пополам все же несравненно проще. Значение, однако, имеет не то, сколько потомков оказывается у каждой клетки – в этом отношении деление бактерий пополам достаточно эффективно. Важно, что при этом происходит с наследственной информацией, которая определяет свойства синтезируемых клеткой белков и порядок их синтеза (последнее не менее значимо).
Вероятно, здесь кроется одна из причин замены РНК в качестве носителя такой информации на ДНК. ДНК состоит из двух комплементарных нитей, каждая из которых может служить матрицей для синтеза новой нити, так что при копировании ДНК (репликации) получаются две идентичные молекулы. Выдайте их по одной дочерним клеткам, и они будут идентичны материнской – и друг другу.
Механизм репликации ДНК довольно надежен (может быть, он был таким не с самого начала). Но, во-первых, в природе не бывает абсолютной надежности, а во-вторых, зачем вам экосистема, состоящая из бесчисленного множества одинаковых существ? Такая экосистема попросту не может быть устойчивой.
При делении прокариотные клетки передают каждому из двух потомков по одной копии собственной ДНК (она у них замкнута в кольцо). Но при ее репликации время от времени, и даже довольно часто, возникают неточности. Вдобавок сама ДНК немного повреждается под воздействием внешних (и внутренних, особенно у более сложных организмов) факторов. Случайно пролетевшая через клетку α-частица повреждает нить ДНК, и находившийся в этом месте элемент кода заменяется новым – не всегда тем же самым… Между прочим, более сложные организмы, о которых речь пойдет дальше, вынуждены задействовать специальные механизмы для исправления подобного рода поломок (хотя бы частичного). Присутствие в окружающей среде тех или иных химических веществ тоже может служить причиной неточностей при репликации ДНК. Ну и, конечно, случайности тоже имеют место. В результате следующее поколение почти идентично предыдущему – почти, но не совсем. И это генетическое разнообразие совершенно необходимо для выживания и эволюции организмов.
Для верующих людей велик соблазн думать, что за эволюционными случайностями скрывается рука Создателя. Я не возьмусь утверждать, что это однозначно не так, но свидетельства в пользу этой версии только косвенные и не слишком убедительные. Да, конечно, многие мутации (изменения в ДНК, передающиеся новым поколениям) появляются подозрительно вовремя, особенно если требуется много изменений одновременно. Но это не дает нам достаточных оснований считать случай инструментом (и псевдонимом) Создателя. Бритва Оккама побуждает избегать подобных спекуляций; к тому же, я полагаю, что принципиально важно было, получится ли в результате эволюции жизни существо, пригодное стать подлинными «руками Создателя» в этом мире, а не то, как именно это получится и даже, дерзну предположить, что это будет за зверь.
д. Надо же чем-то питаться: фотосинтез
Для энергетического обмена (такого, каким он «оказался» на нашей планете) нужны электроны, много электронов. Их можно взять в самых разных местах. Так, некоторые бактерии пользуются сероводородом: берут ион S
2-
2+
3+
Некоторые бактерии обратились к практически неисчерпаемому ресурсу – воде. Они обзавелись весьма своеобразными окрашенными молекулами, пигментами9 (самый известный из них – хлорофилл), которые улавливают фотоны и за счет их энергии становятся сильными окислителями (алчными отнимателями электронов, если говорить на человеческом языке). Эти молекулы один за другим отнимают электроны у целой группы ионов, заряжая эту группу постепенно, как зубец за зубцом взводится пружина арбалета. В конце концов эта группа ионов отнимает электроны у мирно проплывавшей мимо молекулы воды, превращая ее (помимо отнятых электронов) в два иона водорода Н
+
2
2
4
Для нашего рассказа важны две вещи. Во-первых, вся эта процедура, называемая фотосинтезом, способна создавать несущие энергию молекулы углеводов за счет энергии Солнца. Не важно, что ее КПД не слишком высок, – важно, что это дает жизни на Земле источник органических молекул взамен давно съеденных абиогенных веществ из раннего периода развития жизни. И этот ресурс ограничен, строго говоря, только притоком солнечной энергии (сегодняшняя биосфера, включая нас самих, использует лишь ее малую часть, а вот если мы построим так называемую сферу Дайсона…). В человекоразмерных временных масштабах можно считать этот источник энергии неисчерпаемым. Слава Богу.
Заметим, что механизм фотосинтеза чрезвычайно сложен. Он требует множества белков (и генов для них), а кроме белков – гемоподобные структуры, среди которых хлорофилл далеко не одинок, и систему транспорта электронов, и биохимические циклы связывания углерода, и многое другое. Как все это эволюционировало, тем более что по отдельности компоненты этой системы могли быть совершенно нефункциональны, – загадка, настолько интересная, что так и хочется заподозрить Создателя в целенаправленном вмешательстве и здесь тоже. Однако загадка – еще не тайна, и существуют определенные догадки, как это могло произойти.
Побочный продукт фотосинтеза – кислород – попадает в атмосферу. Для современных первым фотосинтезирующим бактериям клеток это был ужас и кошмар, названный впоследствии кислородной катастрофой. Для подавляющего большинства существовавших тогда, около 2—2,5 млрд лет назад, бактерий10 кислород был смертельным ядом. Почти все они – по приблизительной оценке порядка 90% видов – вымерли. Если бы у протерозойских бактерий была ООН, они, конечно, проводили бы бесконечные конференции о противодействии кислородной катастрофе и требовали бы от цианобактерий прекратить выбросы кислорода в атмосферу. Но ООН у них по объективным причинам не было, так что они тихо окислились и стали пищей для выживших. Мы являемся потомками победителей в этой эволюционно-экологической драме, так что – слава Богу.
Накопление кислорода в атмосфере привело к масштабным изменениям ее состава. Метан окислился до углекислого газа, аммиак – до азота (70% сегодняшней атмосферы), сероводород (не съеденный более древними серобактериями) – до оксидов серы. Тогдашние дожди были весьма и весьма кислыми из-за этих оксидов… Постепенно кислорода становилось все больше, и когда все, что могло окислиться в атмосфере, окислилось, кислород стал в этой атмосфере накапливаться, а где-то в промежутке между 2 и 1 млрд лет назад сформировался и озоновый экран, защищающий нас от вредных компонентов солнечного излучения.
Изменения состава атмосферы сказывались и в изменениях климата: в протерозойскую эру не раз наступали эпохи оледенения (в том числе, возможно, глобального, когда вся поверхность океана покрывалась льдом).
В результате описанных трансформаций на Земле появились вместе источник питания (фотосинтез) и кислород, необходимый для клеточного дыхания. Не менее важно, что атмосфера пополнилась углекислым газом. Цианобактерии синтезировали из него органические вещества, а все остальные (сами цианобактерии – тоже) медленно окисляли эти вещества атмосферным кислородом (снова до углекислого газа) и использовали энергию для обеспечения своей жизнедеятельности. Так возник круговорот углерода, а вместе с ним и других элементов (в первую очередь азота и фосфора). Круговорот же, в свою очередь, предполагает наличие пищевой цепи, сначала короткой, а потом все более сложной и длинной. Теперь постоянный приток энергии от Солнца заставлял всю эту химическую машину двигаться, а составляющие ее организмы получили новую возможность усложняться и диверсифицироваться.