Каждый слой воздуха, в том числе и такой тонкий, как молекулярный, имеет свою толщину и свои границы, свои силы поверхностного натяжения, внутреннего напряжения, и т.д., но давление в слое будет тем ниже, чем выше находится слой в «бутерброде», который называется атмосферой. Твердость слоя, наоборот, будет более высокой у более нижнего слоя. Поэтому любое тело, находящееся в атмосфере, воспринимает своими частями разные внешние давления воздуха.
Любое вещество, твердое, жидкое или газообразное, состоит из миллионов и миллионов крошечных молекул, расположенных, казалось бы, вплотную друг к другу. В действительности, однако, расстояния между молекулами не так уж малы по сравнению с их размерами, и молекулы удерживаются на этих расстояниях друг от друга благодаря действию сил, которое можно сравнить с действием пружин.
Молекулы нечувствительны к тому, какие именно другие молекулы становятся их соседями, но сильно реагируют на степень их близости.
Из сказанного становится ясно, каким образом твердые тела, жидкость и газ, проявляют упругость при приложении напряжения – молекулы либо теснее сдвигаются, либо расходятся, а их пружинно подобные связи сжимаются или растягиваются. Как только напряжение снимается, «пружины» вернут молекулы в исходное положение равновесия. О молекулах газа правильнее сказать, что «пружины» не оттягивают их в прежнее положение, а раздвигают друг от друга на прежнее расстояние.
Молекулы воздуха, удерживаемые на некотором расстоянии друг от друга силами упругого типа, – это мельчайшие частицы вещества, и, следовательно, они обладают массой. Каждая молекула все-таки кое-что весит, а поскольку она обладает массой, она проявляет инерционные свойства. Припомним первый закон Ньютона:
Каждое тело находится в состоянии покоя или равномерного прямолинейного движения до тех пор, пока внешняя сила не выведет его из этого состояния.
СИЛА – в механике – мера механического действия на данное материальное тело со стороны других тел. Это действие вызывает изменение скоростей точек тела или его деформацию и может иметь место как при непосредственном контакте (давлении прижатых друг к другу тел), так и через посредство создаваемых телами полей (поле тяготения, электромагнитное поле). Сила – величина векторная и в каждый момент времени характеризуется численным значением, направлением в пространстве и точкой приложения.
Например, как бы хорошо ни были смазаны петли тяжелой дубовой двери, чтобы закрыть ее, обязательно нужно приложить известное усилие, потому что из-за своей массивности она как бы сопротивляется и не приходит сразу в движение. Когда же она придет в движение, понадобится почти такое же усилие, чтобы ее остановить.
Подобным образом, но в малом масштабе сопротивляются изменению движения молекулы воздуха, ближайшие к поверхности слоя. Когда слой двигается, инерция не позволяет этим молекулам мгновенно прийти в движение, поэтому «пружины», отделяющие их от поверхности тела, сожмутся.
Потенциальная энергия, сообщенная телом этим «пружинам», заставит молекулы двигаться вперед. Придя в движение, молекулы, обладающие определенной массой, приобретут кинетическую энергию; потенциальная энергия «пружин» превратится в кинетическую энергию молекул. Затем этот процесс повторится, молекулы первого слоя начнут толкать молекулы следующего слоя, вследствие инерции те также сопротивляются и приходят в движение только после того, как сожмутся «пружины», действующие между молекулами первого и второго слоев. Аналогичное явление (в гораздо более крупном масштабе) наблюдается, когда маневренный паровоз толкает на запасной путь состав железнодорожных вагонов. Вследствие инерции первого вагона – и в меньшей мере трения – пружины его буферов сожмутся, и только после того, как они запасут достаточную потенциальную энергию, первый вагон начнет катиться по рельсам. При этом, он сожмет пружины буферов между первым и вторым вагонами и т. д.; в результате пройдет заметное время, прежде чем покатится также и последний вагон. Теперь легко понять, почему при быстром движении тела на небольшое расстояние весь воздушный столб в целом не приходит в движение мгновенно. Ведь каждому молекулярному слою нужно время, чтобы сдвинуть с места следующий слой.
Потребуется целая секунда для того, чтобы на протяжении 344 м воздух продвинулся вдоль трубы на расстояние, пройденное поршнем. Если бы молекулы были тяжелее или молекулярные силы слабее, времени понадобилось бы больше. Расстояние в 344 м относится к температуре в 20 °С, при 0 °С оно уменьшится до 332 м (с точностью до одного метра). Такое сокращение расстояния обусловлено тем, что при охлаждении молекулы сближаются, и, если бы мы могли подсчитать число слоев молекул воздуха в столбе длиной 344 м при 20 °С, оно равнялось бы числу слоев в столбе воздуха длиной 332 м при 0 °С.
Все эти рассуждения вполне применимы и при движении тела назад. В этом случае оно не сжимает «пружины», а растягивает их до тех пор, пока ближайший к нему молекулярный слой не начнет также двигаться назад. Молекулы первого слоя, кинетическая энергия которых обусловлена этим движением, в свою очередь растянут «пружины», связывающие их со следующим слоем, и т. д. В результате, после того, как тело сдвинулось сначала вперед, а потом назад, все молекулы вернутся на свои исходные места. При этом они передадут «толчок», не получив в итоге никакого остаточного перемещения.
Все тела, находящиеся в воздушной среде, не имеют полностью гладких поверхностей. Поверхности тел, как правило, шероховаты, имеют различные выступы, наросты или впадины, а также волосяной покров, увеличивающие площадь поверхности тел и дающие возможность большего зацепления с воздухом.
При движении тела все эти шероховатости захватывают часть воздуха с собой. Молекулярное натяжение увеличивается, и часть воздуха устремляется вслед за движущимся телом. Если в этот момент резко остановить тело, то движущийся за телом поток воздуха «врежется» в тело и произведет толчок, направленный в сторону движения тела.
ГЛАВА 2
СЕМЯ ОДУВАНЧИКА
При исследовании растительного и животного мира, необходимо всегда помнить одну очень важную деталь. Все представители флоры и фауны, которые не обладают интеллектом, не могут сами что- либо производить по своей воле. Они в состоянии лишь пользоваться тем, что дано им от природы.
Растительный мир очень разнообразен. Почти всё лето и начало осени по воздуху летают различные семена деревьев, кустарников и трав. Некоторые семена снабжены различного рода парашютными системами.
Прежде, чем перейти к описанию полёта птиц и насекомых, есть необходимость рассказать немного о том, каким образом совершают свой полёт листья деревьев, семена клёна, одуванчика и др. растений.
Казалось бы, всё уже известно, что здесь можно рассказать нового?
И всё-таки, я попытаюсь показать кое-что, что может оказать помощь людям, заинтересованным и стремящимся познать физические причины горизонтального полёта многих семян растений, а также основы средств торможения, которыми они снабжены.
Полёт семян, это пассивный полёт, пассивное передвижение тела сверху вниз и, в некоторых случаях, даже снизу-вверх.
Но, если бы семена не обладали возможностью к горизонтальному перемещению, то они падали бы непосредственно под ветками и распространение растений по поверхности земли не происходило бы столь интенсивно, как мы это наблюдаем.